|   | 
Details
   web
Records
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A.
Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 11-23
Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification
Abstract (up) Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.
Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1351
Permanent link to this record
 

 
Author Jiang, J.; He, Y.; Kou, H.; Ju, Z.; Gao, X.; Zhao, H.
Title The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations Type Journal Article
Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 108 Issue Pages 105702
Keywords Animals; Artificial light at night; Eurasian tree sparrow; Melatonin; Intestinal microbiota
Abstract (up) Artificial light at night (ALAN) or light pollution is rapidly widespread with fast urbanization and becomes an obvious environmental disturbance. Recent studies showed ALAN has multiple negative impacts on a wide range of species including bird biological rhythm disruption, behavioral and physiological disturbance and hormone secretion disorder. However, its effects on bird gut microbiota are scarcely studied. In this study, we used Eurasian tree sparrow (Passer montanus), a widely distributed and locally abundant bird species in both urban and rural areas of China to examine the effects of ALAN on locomotor activity rhythm and melatonin secretion, and species diversity and community structure of intestinal microbiota by simulating urban and rural night light environment. Our results showed ALAN strongly affected circadian rhythm of locomotor activity with earlier start of activity before light-on and later rest after light-off. Moreover, ALAN significantly suppressed melatonin release. Last but not least, ALAN profoundly affected taxonomic compositions, species diversity and community structure of intestinal microbiota of birds. We concluded that ALAN may cause bird health damage by disrupting circadian rhythm, inhibiting melatonin release and altering intestinal microbiota. Melatonin hormone level and intestinal microbiota diversity may be important bioindicators for light pollution.
Address College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2781
Permanent link to this record
 

 
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A.
Title Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett
Volume in press Issue Pages 134639
Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)
Abstract (up) Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.
Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3940 ISBN Medium
Area Expedition Conference
Notes PMID:31760086 Approved no
Call Number GFZ @ kyba @ Serial 2760
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G.
Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 2 Pages
Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity
Abstract (up) Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:31936535 Approved no
Call Number GFZ @ kyba @ Serial 2818
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.
Title Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 2015 Issue Pages 20140131
Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects
Abstract (up) Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.
Address Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1128
Permanent link to this record