|   | 
Details
   web
Records
Author Shimoda, M.; Honda, K.-ichiro
Title Insect reactions to light and its applications to pest management Type Journal Article
Year 2013 Publication Applied Entomology and Zoology Abbreviated Journal Appl Entomol Zool
Volume 48 Issue 4 Pages 413-421
Keywords ultraviolet; light; Integrated pest management; Artificial lighting; Photoreception; Phototaxis; Light-emitting diode; *Lighting
Abstract Insects are able to see ultraviolet (UV) radiation. Nocturnal insects are often attracted to light sources that emit large amounts of UV radiation, and devices that exploit this behavior, such as light traps for forecasting pest outbreaks, and electric insect killers, have been developed. Some diurnal species are attracted to yellow; yellow pan traps are used for conducting surveys for pest outbreaks and yellow sticky plates are used for pest control. Lamps that give off yellow illumination have been used effectively to control the activity of nocturnal moths and thus reduce damage to fruit, vegetables, and flowers. Covering cultivation facilities with film that filters out near-UV radiation reduces the invasion of pests such as whiteflies and thrips into the facilities, thus reducing damage. Reflective material placed on cultivated land can control the approach of flying insects such as aphids. Future development and use of new light sources such as light-emitting diodes is anticipated for promoting integrated pest management.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6862 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 110
Permanent link to this record
 

 
Author van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D.
Title Effect of spectral composition of artificial light on the attraction of moths Type Journal Article
Year 2011 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 144 Issue 9 Pages 2274-2281
Keywords insects; moths; artificial light; ecology; population dynamics
Abstract During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of artificial light on species richness and abundance of moths has not been studied systematically. Therefore, we tested the hypotheses that (1) higher species richness and higher abundances of moths are attracted to artificial light with smaller wavelengths than to light with larger wavelengths, and (2) this attraction is correlated with morphological characteristics of moths, especially their eye size. We indeed found higher species richness and abundances of moths in traps with lamps that emit light with smaller wavelengths. These lamps attracted moths with on average larger body mass, larger wing dimensions and larger eyes. Cascading effects on biodiversity and ecosystem functioning, e.g. pollination, can be expected when larger moth species are attracted to these lights. Predatory species with a diet of mainly larger moth species and plant species pollinated by larger moth species might then decline. Moreover, our results indicate a size-bias in trapping moths, resulting in an overrepresentation of larger moth species in lamps with small wavelengths. Our study indicates the potential use of lamps with larger wavelengths to effectively reduce the negative effect of light pollution on moth population dynamics and communities where moths play an important role.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 114
Permanent link to this record
 

 
Author Tsao, J.Y.; Saunders, H.D.; Creighton, J.R.; Coltrin, M.E.; Simmons, J.A.
Title Solid-state lighting: an energy-economics perspective Type Journal Article
Year 2010 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 43 Issue 35 Pages 354001
Keywords artificial light; solid state; light emitting diode; LED; economics
Abstract Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb–Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 127
Permanent link to this record
 

 
Author Davies, T.W.; Bennie, J.; Inger, R.; Gaston, K.J.
Title Artificial light alters natural regimes of night-time sky brightness Type Journal Article
Year 2013 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 3 Issue Pages
Keywords Artificial light; light at nightl skyglow; measurements
Abstract Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 255
Permanent link to this record
 

 
Author Davies, T.W.; Bennie, J.; Gaston, K.J.
Title Street lighting changes the composition of invertebrate communities Type Journal Article
Year 2012 Publication Biology Letters Abbreviated Journal
Volume 8 Issue 5 Pages 764-767
Keywords Ecology; artificial light pollution; community composition; ground-dwelling invertebrates; high pressure sodium; street lights
Abstract Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 474
Permanent link to this record