|   | 
Details
   web
Records
Author Davies, T.W.; Coleman, M.; Griffith, K.M.; Jenkins, S.R.
Title Night-time lighting alters the composition of marine epifaunal communities Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biology Letters
Volume 11 Issue 4 Pages 20150080-20150080
Keywords Ecology; artificial light pollution; marine ecosystems; epifaunal communities; larval recruitment; anthropogenic disturbance; light-emitting diodes; LED; biodiversity; artificial light at night; biology
Abstract Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.
Address (up) Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-9561 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1162
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.
Title Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 2015 Issue Pages 20140131
Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects
Abstract Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.
Address (up) Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1128
Permanent link to this record
 

 
Author Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J.
Title Potential biological and ecological effects of flickering artificial light Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue 5 Pages e98631
Keywords flickering; artificial light; biology
Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.
Address (up) Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24874801; PMCID:PMC4038456 Approved no
Call Number IDA @ john @ Serial 237
Permanent link to this record
 

 
Author Costin, K.J.; Boulton, A.M.
Title A Field Experiment on the Effect of Introduced Light Pollution on Fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland Type Journal Article
Year 2016 Publication The Coleopterists Bulletin Abbreviated Journal The Coleopterists Bulletin
Volume 70 Issue 1 Pages 84-86
Keywords Animals; insects; fireflies; Coleoptera; Lampyridae; Coleoptera Lampyridae; artificial light at night; ecology; light pollution
Abstract (none)
Address (up) Environmental Biology Hood College 401 Rosemont Avenue Frederick, MD 21701, U.S.A.; kjc(at)hood.edu
Corporate Author Thesis
Publisher BioOne Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-065X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1406
Permanent link to this record
 

 
Author Kuechly, H.U.; Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Wolter, C.; Fischer, J.; Hölker, F.
Title Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany Type Journal Article
Year 2012 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 126 Issue Pages 39-50
Keywords Light pollution; Artificial lighting; Urban analysis; Remote sensing; GIS; Darkness; Spatial analysis; Light at night
Abstract Aerial observations of light pollution can fill an important gap between ground based surveys and nighttime satellite data. Terrestrially bound surveys are labor intensive and are generally limited to a small spatial extent, and while existing satellite data cover the whole world, they are limited to coarse resolution. This paper describes the production of a high resolution (1 m) mosaic image of the city of Berlin, Germany at night. The dataset is spatially analyzed to identify the major sources of light pollution in the city based on urban land use data. An area-independent ‘brightness factor’ is introduced that allows direct comparison of the light emission from differently sized land use classes, and the percentage area with values above average brightness is calculated for each class. Using this methodology, lighting associated with streets has been found to be the dominant source of zenith directed light pollution (31.6%), although other land use classes have much higher average brightness. These results are compared with other urban light pollution quantification studies. The minimum resolution required for an analysis of this type is found to be near 10 m. Future applications of high resolution datasets such as this one could include: studies of the efficacy of light pollution mitigation measures, improved light pollution simulations, economic and energy use, the relationship between artificial light and ecological parameters (e.g. circadian rhythm, fitness, mate selection, species distributions, migration barriers and seasonal behavior), or the management of nightscapes. To encourage further scientific inquiry, the mosaic data is freely available at Pangaea: http://dx.doi.org/10.1594/PANGAEA.785492.
Address (up) Freie Universität Berlin, Department of Earth Sciences, Institute for Space Sciences, Carl-Heinrich-Becker-Weg 6‐10, 12165 Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 188
Permanent link to this record