|   | 
Details
   web
Records
Author Edison, T.A.
Title The Success of the Electric Light Type Magazine Article
Year 1880 Publication The North American Review Abbreviated Journal N. American Rev.
Volume 131 Issue 287 Pages 295-300
Keywords Society; history; artificial light; Lighting
Abstract (none)
Address
Corporate Author Thesis
Publisher University of Northern Iowa Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1272
Permanent link to this record
 

 
Author Hamilton, J.
Title Electric Light Captures Type Journal Article
Year 1889 Publication Psyche Abbreviated Journal Psyche
Volume 5 Issue 153 Pages 149-150
Keywords Animals; Ecology; artificial light; Calosoma scrutator; Calosoma willcoxi; Calosoma externum; Diplochila major; Polymoechus brevipes; Erycus puncticollis; Cybister fimbirolatus; Dytiscus fasciventrus; Hydrophilus trangularis; Belostoma americanum; beetles; hemiptera; insects; coleoptera; water beetles; urban; cities
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1273
Permanent link to this record
 

 
Author Holzhauer S.I.J.; Franke S.; Kyba C.C.M.; Manfrin A.; Klenke R.; Voigt C.C.; Lewanzik D.; Oehlert M.; Monaghan M.T.; Schneider S.; Heller S.; Kuechly H.; Brüning A.; Honnen A.-C.; Hölker F.
Title Out of the Dark: Establishing a Large-Scale Field Experiment to Assess the Effects of Artificial Light at Night on Species and Food Webs Type Journal Article
Year 2015 Publication Sustainability Abbreviated Journal
Volume 7 Issue 11 Pages 15593-15616
Keywords ALAN; artificial light at night; ecosystems; freshwater; light pollution; loss of the night; photometric characterization; riparian; Verlust der Nacht
Abstract Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301/310, 12587 Berlin, Germany; holzhauer(at)igb-berlin.de
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1305
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 15 Issue 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area (up) Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record
 

 
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P.
Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems
Volume 19 Issue 2 Pages 535–546
Keywords Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization
Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.
Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-8155 ISBN Medium
Area (up) Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1316
Permanent link to this record