|   | 
Details
   web
Records
Author (up) Pendoley, K.; Kamrowski, R.
Title Influence of horizon elevation on the sea-finding behaviour of hatchling flatback turtles exposed to artificial light glow Type Journal Article
Year 2015 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 529 Issue Pages 279-288
Keywords Animals; Hatchling orientation; Artificial lighting; Horizon elevation; Marine turtle; Conservation management; Elevation; Industry; Coastal development; Sea turtle; Sea turtle conservation
Abstract Marine turtles are threatened globally by increasing coastal development. In particular, increased artificial lighting at the nesting beach has the potential to disrupt turtle breeding success. Few published data exist regarding the behaviour of the flatback turtle Natator depressus, a species endemic to Australia, in response to artificial light. Given the ongoing industrialisation of the Australian coastline, this study is a timely investigation into the orientation of flatback hatchlings exposed to light glow produced by lighting typically used in industrial settings. We recorded the orientation of hatchlings at the nesting beach on Barrow Island, Western Australia, exposed to 3 types of standard lighting — high-pressure sodium vapour (HPS), metal halide (MH), and fluorescent white (FW)—at 3 different intensities. The light array was positioned either behind a high dune (producing a high, dark silhouette; 16° elevation), or in a low creek bed (producing a low silhouette and bright horizon; 2° elevation). At medium and high light intensities of all 3 light types, hatchlings were significantly less ocean-oriented when exposed to light at 2° elevation compared to 16° elevation. This difference remained with glow from low-intensity MH light; however, there was no significant difference in orientation of hatchlings exposed to low- intensity HPS and FW light glow at either elevation. Our study emphasises the importance of horizon elevation cues in hatchling sea-finding. Since all species of marine turtles show similar sea-finding behaviour, our results have important implications for management of lighting adjacent to turtle nesting beaches in Australia and elsewhere, as coastal development continues.
Address Pendoley Environmental Pty Ltd, 12A Pitt Way, Booragoon, Western Australia 6154, Australia; ruth.kamrowski@penv.com.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1189
Permanent link to this record
 

 
Author (up) Rakshit, K.; Thomas, A.P.; Matveyenko, A.V.
Title Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Type Journal Article
Year 2014 Publication Current Diabetes Reports Abbreviated Journal Curr Diab Rep
Volume 14 Issue 4 Pages 474
Keywords *epidemiology; diabetes; Type 2 diabetes; beta cell; T2DM; artificial light; light exposure; circadian disruption
Abstract Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Address Larry L. Hillblom Islet Research Center, Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 900A Weyburn Place, Los Angeles, CA, 90095, USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4827 ISBN Medium
Area Expedition Conference
Notes PMID:24532160; PMCID:PMC3988110 Approved no
Call Number IDA @ john @ Serial 320
Permanent link to this record
 

 
Author (up) Riley, W.D.; Bendall, B.; Ives, M.J.; Edmonds, N.J.; Maxwell, D.L.
Title Street lighting disrupts the diel migratory pattern of wild Atlantic salmon, Salmo salar L., smolts leaving their natal stream Type Journal Article
Year 2012 Publication Aquaculture Abbreviated Journal Aquaculture
Volume 330-333 Issue Pages 74-81
Keywords Artificial light; Behaviour; Migration; Salmon; Smolt; Street lighting
Abstract The migratory timing and behaviour of wild Atlantic salmon smolts leaving their natal stream was determined using a passive integrated transponder (PIT) antennae system at a study site on a tributary of the River Itchen, England. Experiments compared the downstream migration of smolts under natural control conditions (2000–2006) with two years (2008 and 2009) when the main downstream exit of the study site was subject to street-lit conditions every alternate night (maximum light intensity measured at the stream surface = 14 lx). Migration of smolts under control conditions was significantly (p < 0.01, n = 170) correlated with sunset. By contrast, street lighting resulted in the timing of migration being random (p = 0.11, n = 7; p = 0.76, n = 34, respectively) with respect to time of day. Furthermore, migration of smolts was significantly (p = 0.01, n = 19) correlated with the time of sunset for fish migrating when the lamp had been off, but random (p = 0.36, n = 22) when the lamp had been on (2008 and 2009 data, combined). This alteration in migratory behaviour due to street lighting may impact fitness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8486 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 69
Permanent link to this record
 

 
Author (up) Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G.
Title Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal
Volume Issue Pages 187-213
Keywords Animals; bats; vertebrates; ecology; artificial light at night; climate change
Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.
Address School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-25218-6 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1320
Permanent link to this record
 

 
Author (up) Schoeman, M.C.
Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.
Volume 19 Issue 2 Pages 120–130
Keywords Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus
Abstract Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.
Address School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-9430 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1223
Permanent link to this record