|   | 
Details
   web
Records
Author Westby, K.M.; Medley, K.A.
Title Cold Nights, City Lights: Artificial Light at Night Reduces Photoperiodically Induced Diapause in Urban and Rural Populations of Aedes albopictus (Diptera: Culicidae) Type Journal Article
Year 2020 Publication Journal of Medical Entomology Abbreviated Journal J Med Entomol
Volume in press Issue Pages
Keywords Animals; Aedes albopictus; artificial light at night; common garden; diapause; urban ecology
Abstract As the planet becomes increasingly urbanized, it is imperative that we understand the ecological and evolutionary consequences of urbanization on species. One common attribute of urbanization that differs from rural areas is the prevalence of artificial light at night (ALAN). For many species, light is one of the most important and reliable environmental cues, largely governing the timing of daily and seasonal activity patterns. Recently, it has been shown that ALAN can alter behavioral, phenological, and physiological traits in diverse taxa. For temperate insects, diapause is an essential trait for winter survival and commences in response to declining daylight hours in the fall. Diapause is under strong selection pressure in the mosquito, Aedes albopictus (Skuse); local adaptation and rapid evolution has been observed along a latitudinal cline. It is unknown how ALAN affects this photosensitive trait or if local adaptation has occurred along an urbanization gradient. Using a common garden experiment, we experimentally demonstrated that simulated ALAN reduces diapause incidence in this species by as much as 40%. There was no difference, however, between urban and rural demes. We also calculated diapause incidence from wild demes in urban areas to determine whether wild populations exhibited lower than predicted incidence compared to estimates from total nocturnal darkness. In early fall, lower than predicted diapause incidence was recorded, but all demes reached nearly 100% diapause before terminating egg laying. It is possible that nocturnal resting behavior in vegetation limits the amount of ALAN exposure this species experiences potentially limiting local adaptation.
Address Tyson Research Center, Washington University in Saint Louis, Eureka, MO
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2585 ISBN Medium
Area Expedition Conference
Notes PMID:32638000 Approved no
Call Number (up) GFZ @ kyba @ Serial 3042
Permanent link to this record
 

 
Author Verma, A.K.; Singh, S.; Rizvi, S.I.
Title Age-dependent altered redox homeostasis in the chronodisrupted rat model and moderation by melatonin administration Type Journal Article
Year 2020 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume in press Issue Pages
Keywords Animals; Aging; artificial light-at-night; circadian disruption; melatonin; oxidative stress
Abstract Circadian disruption or chronodisruption (CD) occurs when day-night cycles and other internal rhythms are not adjusted to environmental light-dark regimens and are unable to synchronize among each other. Artificial light-induced oxidative stress is a major concern as the circadian physiology of the cell is chronically altered due to suppression of the time-keeping hormone, melatonin. The relationship between age-related impaired redox status and disrupted circadian rhythms is still not fully understood. The present study evaluated the effect of artificial light at night (ALAN) with respect to aging and role of melatonin supplementation. This study was conducted on young (3 months) and old (24 months) male Wistar rats subdivided into four groups control (C), melatonin treated (MLT), artificial light at night (ALAN), and ALAN+MLT group. Pronounced changes were observed in the old compared to the young rats. Reactive oxygen species (ROS), malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl (PCO), and sialic acid (SA) were significantly (p </= 0.05) increased, while ferric reducing ability of plasma (FRAP) and reduced glutathione (GSH) were significantly (p </= 0.05) suppressed in light-exposed young and old animals compared to their age-matched controls. Advanced oxidation protein products (AOPP) increased non-significantly in young rats of the ALAN group; however, significant (p </= 0.05) changes were observed in the old rats of the ALAN group compared to their respective controls. Advanced glycation end products (AGEs) increased and acetylcholinesterase (AChE) activity decreased, significantly (p </= 0.05) in young animals of the ALAN group, while nonsignificant changes of both parameters were recorded in the old animals of the ALAN groups compared with their age-matched controls. Melatonin supplementation resulted in maintenance of the normal redox homeostasis in both young and old animal groups. Our study suggests that aged rats are more susceptible to altered photoperiod as their circadian redox homeostasis is under stress subsequent to ALAN. Melatonin supplementation could be a promising means of alleviating age-related circadian disturbances, especially in light-polluted areas.
Address Department of Biochemistry, University of Allahabad , Allahabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:32731777 Approved no
Call Number (up) GFZ @ kyba @ Serial 3067
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number (up) IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Troy, J.R.; Holmes, N.D.; Green, M.C.
Title Modeling artificial light viewed by fledgling seabirds Type Journal Article
Year 2011 Publication Ecosphere Abbreviated Journal Ecosphere
Volume 2 Issue 10 Pages art109
Keywords artificial light; fallout; Hydrobatidae; modeling; Newell's Shearwater; Procellariidae; Puffinus newelli; birds
Abstract Artificial light is increasing in coverage across the surface of our planet, impacting the behavioral ecology of many organisms. Attraction to sources of artificial light is a significant threat to certain fledgling shearwaters, petrels (Procellariidae), and storm-petrels (Hydrobatidae) on their first nocturnal flights to the sea. Disorientation by light can cause these birds to crash into vegetation or manmade structures, potentially resulting in death from physical injury, starvation, dehydration, predation by introduced predators, or collisions with vehicles. We developed a GIS-based method to model the intensity of artificial light that fledgling procellariids and hydrobatids could view en route to the ocean (to estimate the degree of threat that artificial light poses to these birds) and present two models for the island of Kauai as examples. These models are particularly relevant to the federally threatened Newell's Shearwater, or `A`o (Puffinus newelli), of which >30,000 fledglings have been collected in response to disorientation by lights on Kauai during the past 30 years. Our models suggest that there are few to no portions of Kauai from which young birds could fledge and not view light on their post-natal nocturnal flights, which is concerning given evidence of a Newell's Shearwater population decline. In future work using this technique, night light intensity layers could be altered to model the effects of modified coastal light conditions on known and potential procellariid and hydrobatid breeding locations. Furthermore, certain methods presented herein may be applicable to other seabirds and additional taxa in which attraction to anthropogenic light poses a serious threat, including migratory passerines and hatchling marine turtles. Components of this modeling approach could potentially be used to spatially estimate effects of other point-source threats to ecological systems, including sound and air pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) IDA @ john @ Serial 60
Permanent link to this record
 

 
Author Canário, F.; Hespanhol Leitão, A.; Tomé, R.
Title Predation Attempts by Short-eared and Long-eared Owls on Migrating Songbirds Attracted to Artificial Lights Type Journal Article
Year 2012 Publication Journal of Raptor Research Abbreviated Journal Journal of Raptor Research
Volume 46 Issue 2 Pages 232-234
Keywords Asio otus; Long-eared Owl; birds; Asio flammeus; Short-eared Owl; artificial light; migration; predation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-1016 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) IDA @ john @ Serial 61
Permanent link to this record