toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L. url  doi
openurl 
  Title Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
  Year 2019 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 180 Issue Pages 108823  
  Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage  
  Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.  
  Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31627155 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2702  
Permanent link to this record
 

 
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A. url  doi
openurl 
  Title Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
  Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett  
  Volume in press Issue Pages 134639  
  Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)  
  Abstract Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.  
  Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31760086 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2760  
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. url  doi
openurl 
  Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
  Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 21 Issue 2 Pages  
  Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity  
  Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31936535 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2818  
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M. url  doi
openurl 
  Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 82 Issue 2 Pages 478-485  
  Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank  
  Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.  
  Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23190422 Approved no  
  Call Number (up) IDA @ john @ Serial 44  
Permanent link to this record
 

 
Author Troy, J.R.; Holmes, N.D.; Green, M.C. url  doi
openurl 
  Title Modeling artificial light viewed by fledgling seabirds Type Journal Article
  Year 2011 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 2 Issue 10 Pages art109  
  Keywords artificial light; fallout; Hydrobatidae; modeling; Newell's Shearwater; Procellariidae; Puffinus newelli; birds  
  Abstract Artificial light is increasing in coverage across the surface of our planet, impacting the behavioral ecology of many organisms. Attraction to sources of artificial light is a significant threat to certain fledgling shearwaters, petrels (Procellariidae), and storm-petrels (Hydrobatidae) on their first nocturnal flights to the sea. Disorientation by light can cause these birds to crash into vegetation or manmade structures, potentially resulting in death from physical injury, starvation, dehydration, predation by introduced predators, or collisions with vehicles. We developed a GIS-based method to model the intensity of artificial light that fledgling procellariids and hydrobatids could view en route to the ocean (to estimate the degree of threat that artificial light poses to these birds) and present two models for the island of Kauai as examples. These models are particularly relevant to the federally threatened Newell's Shearwater, or `A`o (Puffinus newelli), of which >30,000 fledglings have been collected in response to disorientation by lights on Kauai during the past 30 years. Our models suggest that there are few to no portions of Kauai from which young birds could fledge and not view light on their post-natal nocturnal flights, which is concerning given evidence of a Newell's Shearwater population decline. In future work using this technique, night light intensity layers could be altered to model the effects of modified coastal light conditions on known and potential procellariid and hydrobatid breeding locations. Furthermore, certain methods presented herein may be applicable to other seabirds and additional taxa in which attraction to anthropogenic light poses a serious threat, including migratory passerines and hatchling marine turtles. Components of this modeling approach could potentially be used to spatially estimate effects of other point-source threats to ecological systems, including sound and air pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-8925 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) IDA @ john @ Serial 60  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: