toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hersh, C.; Sisti, J.; Richiutti, V.; Schernhammer, E. url  openurl
  Title The effects of sleep and light at night on melatonin in adolescents Type Journal Article
  Year 2015 Publication Hormones Abbreviated Journal Hormones  
  Volume Issue Pages  
  Keywords Human Health; melatonin; circadian rhythm; 6-sulfatoxymelatonin; artificial light at night  
  Abstract OBJECTIVE: The circadian hormone melatonin has wide-reaching effects on human physiology. In adolescents, the impact of nighttime light exposure and other modifiable behavioral factors on melatonin levels is poorly understood.

DESIGN: We cross-sectionally examined the influence of nighttime behaviors on melatonin levels in 100 adolescents (average age: 15.7; 55 female, 45 male), who completed a self-administered questionnaire and provided a first morning urine sample to assay for urinary 6-sulfatoxymelatonin (aMT6s) levels. We used mixed-effects regression models to test for differences in aMT6s levels by categories of covariates.

RESULTS: Self-reported sleep duration, ambient light levels during sleep, and use of electronics after turning off lights did not significantly predict aMT6s levels. Compared to those who reported weekend bedtimes before 11pm, urinary aMT6s levels were significantly lower among participants reporting weekend bedtimes after midnight (52.5 vs. 38.0 ng/mg creatinine, Ptrend=0.007). Sleep interruption also appeared to be significantly associated with lower urinary aMT6s levels, but only if lights were turned on during sleep interruption (43.0 ng/mg creatinine for participants with sleep interruption but not turning lights on, vs. 24.6 ng/mg creatinine for participants reporting that they turned on the light when their sleep was interrupted Pdifference=0.032).



CONCLUSIONS: Our study suggests that self-reported sleep-related behaviors have little to no effect on adolescent circadian systems, though larger studies are needed to confirm our findings.
 
  Address Julia Sisti, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA, Tel.: (201) 694-2077, E-mail: jss235@mail.harvard.edu  
  Corporate Author Thesis  
  Publisher Greek Endocrine Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1215  
Permanent link to this record
 

 
Author Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.; et al. url  openurl
  Title The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy Type Journal Article
  Year 2010 Publication Ecol Soc Abbreviated Journal  
  Volume 15 Issue 4 Pages  
  Keywords Ecology; artificial light; energy efficiency; lighting concept; light pollution; nightscape; policy; sustainability; transdisciplinary  
  Abstract Although the invention and widespread use of artificial light is clearly one of the most important human technological advances, the transformation of nightscapes is increasingly recognized as having adverse effects. Night lighting may have serious physiological consequences for humans, ecological and evolutionary implications for animal and plant populations, and may reshape entire ecosystems. However, knowledge on the adverse effects of light pollution is vague. In response to climate change and energy shortages, many countries, regions, and communities are developing new lighting programs and concepts with a strong focus on energy efficiency and greenhouse gas emissions. Given the dramatic increase in artificial light at night (0 – 20% per year, depending on geographic region), we see an urgent need for light pollution policies that go beyond energy efficiency to include human well-being, the structure and functioning of ecosystems, and inter-related socioeconomic consequences. Such a policy shift will require a sound transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend. Knowledge is also urgently needed on suitable lighting technologies and concepts which are ecologically, socially, and economically sustainable. Unless managing darkness becomes an integral part of future conservation and lighting policies, modern society may run into a global self-experiment with unpredictable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 478  
Permanent link to this record
 

 
Author Holzhauer S.I.J.; Franke S.; Kyba C.C.M.; Manfrin A.; Klenke R.; Voigt C.C.; Lewanzik D.; Oehlert M.; Monaghan M.T.; Schneider S.; Heller S.; Kuechly H.; Brüning A.; Honnen A.-C.; Hölker F. url  doi
openurl 
  Title Out of the Dark: Establishing a Large-Scale Field Experiment to Assess the Effects of Artificial Light at Night on Species and Food Webs Type Journal Article
  Year 2015 Publication Sustainability Abbreviated Journal  
  Volume 7 Issue 11 Pages 15593-15616  
  Keywords ALAN; artificial light at night; ecosystems; freshwater; light pollution; loss of the night; photometric characterization; riparian; Verlust der Nacht  
  Abstract Artificial light at night (ALAN) is one of the most obvious hallmarks of human presence in an ecosystem. The rapidly increasing use of artificial light has fundamentally transformed nightscapes throughout most of the globe, although little is known about how ALAN impacts the biodiversity and food webs of illuminated ecosystems. We developed a large-scale experimental infrastructure to study the effects of ALAN on a light-naïve, natural riparian (i.e., terrestrial-aquatic) ecosystem. Twelve street lights (20 m apart) arranged in three rows parallel to an agricultural drainage ditch were installed on each of two sites located in a grassland ecosystem in northern Germany. A range of biotic, abiotic, and photometric data are collected regularly to study the short- and long-term effects of ALAN on behavior, species interactions, physiology, and species composition of communities. Here we describe the infrastructure setup and data collection methods, and characterize the study area including photometric measurements. None of the measured parameters differed significantly between sites in the period before illumination. Results of one short-term experiment, carried out with one site illuminated and the other acting as a control, demonstrate the attraction of ALAN by the immense and immediate increase of insect catches at the lit street lights. The experimental setup provides a unique platform for carrying out interdisciplinary research on sustainable lighting.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301/310, 12587 Berlin, Germany; holzhauer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1305  
Permanent link to this record
 

 
Author Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J. url  doi
openurl 
  Title Potential biological and ecological effects of flickering artificial light Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 5 Pages e98631  
  Keywords flickering; artificial light; biology  
  Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24874801; PMCID:PMC4038456 Approved no  
  Call Number IDA @ john @ Serial 237  
Permanent link to this record
 

 
Author Isenstadt, S.; Petty, M.M.; Neumann, D. url  isbn
openurl 
  Title Cities of Light: Two Centuries of Urban Illumination Type Book Whole
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; urban; cities; outdoor lighting; artificial lighting; urban design; city planning; urban studies; urban history; infrastructure  
  Abstract Cities of Light is the first global overview of modern urban illumination, a development that allows human wakefulness to colonize the night, doubling the hours available for purposeful and industrious activities. Urban lighting is undergoing a revolution due to recent developments in lighting technology, and increased focus on sustainability and human-scaled environments. Cities of Light is expansive in coverage, spanning two centuries and touching on developments on six continents, without diluting its central focus on architectural and urban lighting. Covering history, geography, theory, and speculation in urban lighting, readers will have numerous points of entry into the book, finding it easy to navigate for a quick reference and or a coherent narrative if read straight through. With chapters written by respected scholars and highly-regarded contemporary practitioners, this book will delight students and practitioners of architectural and urban history, area and cultural studies, and lighting design professionals and the institutional and municipal authorities they serve. At a moment when the entire world is being reshaped by new lighting technologies and new design attitudes, the longer history of urban lighting remains fragmentary. Cities of Light aims to provide a global framework for historical studies of urban lighting and to offer a new perspective on the fast-moving developments of lighting today.  
  Address  
  Corporate Author Thesis  
  Publisher Routledge Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition First  
  ISSN ISBN 978-1138813915 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1086  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: