toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shimoda, M.; Honda, K.-ichiro url  doi
openurl 
  Title Insect reactions to light and its applications to pest management Type Journal Article
  Year 2013 Publication Applied Entomology and Zoology Abbreviated Journal Appl Entomol Zool  
  Volume 48 Issue 4 Pages 413-421  
  Keywords ultraviolet; light; Integrated pest management; Artificial lighting; Photoreception; Phototaxis; Light-emitting diode; *Lighting  
  Abstract Insects are able to see ultraviolet (UV) radiation. Nocturnal insects are often attracted to light sources that emit large amounts of UV radiation, and devices that exploit this behavior, such as light traps for forecasting pest outbreaks, and electric insect killers, have been developed. Some diurnal species are attracted to yellow; yellow pan traps are used for conducting surveys for pest outbreaks and yellow sticky plates are used for pest control. Lamps that give off yellow illumination have been used effectively to control the activity of nocturnal moths and thus reduce damage to fruit, vegetables, and flowers. Covering cultivation facilities with film that filters out near-UV radiation reduces the invasion of pests such as whiteflies and thrips into the facilities, thus reducing damage. Reflective material placed on cultivated land can control the approach of flying insects such as aphids. Future development and use of new light sources such as light-emitting diodes is anticipated for promoting integrated pest management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6862 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 110  
Permanent link to this record
 

 
Author Smolensky, M.H.; Sackett-Lundeen, L.L.; Portaluppi, F. url  doi
openurl 
  Title Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume Issue Pages 1-20  
  Keywords Human Health; Artificial light at night; cancer; circadian time structure; development and disruption; melatonin; sleep/wake cycle disturbance; sunlight; vitamin D; vitamin D deficiency; circadian time structure; circadian rhythm; desynchrony  
  Abstract Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like – now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children – is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm lambda) spectrum synchronizes the CTS and whose UV-B (290-315 nm lambda) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today's man-made artificial light environment, which in our opinion is long overdue.  
  Address c Hypertension Center, S. Anna University Hospital, University of Ferrara , Ferrara , Italy  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26374931 Approved no  
  Call Number IDA @ john @ Serial 1271  
Permanent link to this record
 

 
Author Stevens, R.G.; Zhu, Y. url  doi
openurl 
  Title Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140120  
  Keywords Human Health; circadian disruption; breast cancer; circadian genes; artificial light at night; iron  
  Abstract Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution.  
  Address Department of Community Medicine, University of Connecticut Health Center, Farmington, CT, USA; bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1118  
Permanent link to this record
 

 
Author Stone, E.L.; Wakefield, A.; Harris, S.; Jones, G. url  doi
openurl 
  Title The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140127  
  Keywords Lighting; Animals; bats; mammals; Pipistrellus pipistrellus; Pipistrellus pygmaeus; Nyctalus; Eptesicus; artificial lighting; ecosystem-level effects; Philips CosmoPolis lights; light pollution  
  Abstract Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercurLighting; artificial lighting; ecosystem-level effects; Philips CosmoPolis lights; light pollutiony vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale.  
  Address School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; emma.stone@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1121  
Permanent link to this record
 

 
Author Thompson, G. url  openurl
  Title Spiders and the electric light Type Journal Article
  Year 1887 Publication Science Abbreviated Journal Science  
  Volume 9 Issue 208 Pages 92  
  Keywords Ecology; artificial light at night; spiders; arachnids  
  Abstract Some disadvantage or evil appears to be attendant upon every invention, and the electric light is not an exception in this respect. In this city they have been placed in positions with a view of illuminating the buildings, notably the treasury, and a fine and striking effect is produced. At the same time, a species of spider has discovered that game is plentiful in their vicinity, and that he can ply his craft both day and night. In consequence, their webs are so thick and numerous that portions of the architectural ornamentation are no longer visible, and when torn down by the wind, or when they fall from decay, the refuse gives a dingy and dirty appearance to every thing it comes in contact with. Not only this, but these adventurers take possession of the portion of the ceiling of any room which receives the illumination. It would be of interest to know whether this spider is confined to a certain latitude, and at what seasons of the year our temperature we can indulge in our illumination.  
  Address  
  Corporate Author Thesis  
  Publisher AAAS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1267  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: