|   | 
Details
   web
Records
Author Pendoley, K.; Kamrowski, R.
Title Influence of horizon elevation on the sea-finding behaviour of hatchling flatback turtles exposed to artificial light glow Type Journal Article
Year 2015 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 529 Issue Pages (down) 279-288
Keywords Animals; Hatchling orientation; Artificial lighting; Horizon elevation; Marine turtle; Conservation management; Elevation; Industry; Coastal development; Sea turtle; Sea turtle conservation
Abstract Marine turtles are threatened globally by increasing coastal development. In particular, increased artificial lighting at the nesting beach has the potential to disrupt turtle breeding success. Few published data exist regarding the behaviour of the flatback turtle Natator depressus, a species endemic to Australia, in response to artificial light. Given the ongoing industrialisation of the Australian coastline, this study is a timely investigation into the orientation of flatback hatchlings exposed to light glow produced by lighting typically used in industrial settings. We recorded the orientation of hatchlings at the nesting beach on Barrow Island, Western Australia, exposed to 3 types of standard lighting — high-pressure sodium vapour (HPS), metal halide (MH), and fluorescent white (FW)—at 3 different intensities. The light array was positioned either behind a high dune (producing a high, dark silhouette; 16° elevation), or in a low creek bed (producing a low silhouette and bright horizon; 2° elevation). At medium and high light intensities of all 3 light types, hatchlings were significantly less ocean-oriented when exposed to light at 2° elevation compared to 16° elevation. This difference remained with glow from low-intensity MH light; however, there was no significant difference in orientation of hatchlings exposed to low- intensity HPS and FW light glow at either elevation. Our study emphasises the importance of horizon elevation cues in hatchling sea-finding. Since all species of marine turtles show similar sea-finding behaviour, our results have important implications for management of lighting adjacent to turtle nesting beaches in Australia and elsewhere, as coastal development continues.
Address Pendoley Environmental Pty Ltd, 12A Pitt Way, Booragoon, Western Australia 6154, Australia; ruth.kamrowski@penv.com.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1189
Permanent link to this record
 

 
Author Bará, S.; Escofet, J.
Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans
Volume 205 Issue Pages (down) 267-277
Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry
Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.
Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2163
Permanent link to this record
 

 
Author Sella, K.N.; Salmon, M.; Witherington, B.E.
Title Filtered Streetlights Attract Hatchling Marine Turtles Type Journal Article
Year 2006 Publication Chelonian Conservation and Biology Abbreviated Journal Chelonian Conservation and Biology
Volume 5 Issue 2 Pages (down) 255-261
Keywords Reptilia; Testudines; Cheloniidae; Loggerhead turtle; turtles; marine turtles; reptiles; Caretta caretta; Chelonia mydas; hatchlings; artificial lighting; light “trapping”; orientation; seafinding; Florida
Abstract On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those <&#8201;530 nm; those <&#8201;570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1071-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 78
Permanent link to this record
 

 
Author Canário, F.; Hespanhol Leitão, A.; Tomé, R.
Title Predation Attempts by Short-eared and Long-eared Owls on Migrating Songbirds Attracted to Artificial Lights Type Journal Article
Year 2012 Publication Journal of Raptor Research Abbreviated Journal Journal of Raptor Research
Volume 46 Issue 2 Pages (down) 232-234
Keywords Asio otus; Long-eared Owl; birds; Asio flammeus; Short-eared Owl; artificial light; migration; predation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-1016 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 61
Permanent link to this record
 

 
Author Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G.
Title Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal
Volume Issue Pages (down) 187-213
Keywords Animals; bats; vertebrates; ecology; artificial light at night; climate change
Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.
Address School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-25218-6 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1320
Permanent link to this record