|   | 
Details
   web
Records
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L.
Title Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
Year 2019 Publication Environmental Research Abbreviated Journal Environ Res
Volume 180 Issue Pages 108823
Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage
Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.
Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0013-9351 ISBN Medium
Area Expedition Conference
Notes PMID:31627155 Approved no
Call Number GFZ @ kyba @ Serial 2702
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Westby, K.M.; Medley, K.A.
Title Cold Nights, City Lights: Artificial Light at Night Reduces Photoperiodically Induced Diapause in Urban and Rural Populations of Aedes albopictus (Diptera: Culicidae) Type Journal Article
Year 2020 Publication Journal of Medical Entomology Abbreviated Journal J Med Entomol
Volume in press Issue Pages
Keywords Animals; Aedes albopictus; artificial light at night; common garden; diapause; urban ecology
Abstract As the planet becomes increasingly urbanized, it is imperative that we understand the ecological and evolutionary consequences of urbanization on species. One common attribute of urbanization that differs from rural areas is the prevalence of artificial light at night (ALAN). For many species, light is one of the most important and reliable environmental cues, largely governing the timing of daily and seasonal activity patterns. Recently, it has been shown that ALAN can alter behavioral, phenological, and physiological traits in diverse taxa. For temperate insects, diapause is an essential trait for winter survival and commences in response to declining daylight hours in the fall. Diapause is under strong selection pressure in the mosquito, Aedes albopictus (Skuse); local adaptation and rapid evolution has been observed along a latitudinal cline. It is unknown how ALAN affects this photosensitive trait or if local adaptation has occurred along an urbanization gradient. Using a common garden experiment, we experimentally demonstrated that simulated ALAN reduces diapause incidence in this species by as much as 40%. There was no difference, however, between urban and rural demes. We also calculated diapause incidence from wild demes in urban areas to determine whether wild populations exhibited lower than predicted incidence compared to estimates from total nocturnal darkness. In early fall, lower than predicted diapause incidence was recorded, but all demes reached nearly 100% diapause before terminating egg laying. It is possible that nocturnal resting behavior in vegetation limits the amount of ALAN exposure this species experiences potentially limiting local adaptation.
Address Tyson Research Center, Washington University in Saint Louis, Eureka, MO
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-2585 ISBN Medium
Area Expedition Conference
Notes PMID:32638000 Approved no
Call Number GFZ @ kyba @ Serial 3042
Permanent link to this record
 

 
Author Tsao, J.Y.; Saunders, H.D.; Creighton, J.R.; Coltrin, M.E.; Simmons, J.A.
Title Solid-state lighting: an energy-economics perspective Type Journal Article
Year 2010 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 43 Issue 35 Pages 354001
Keywords artificial light; solid state; light emitting diode; LED; economics
Abstract Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb–Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-3727 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 127
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A.
Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 11-23
Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification
Abstract Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.
Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1351
Permanent link to this record