|   | 
Details
   web
Records
Author Sella, K.N.; Salmon, M.; Witherington, B.E.
Title Filtered Streetlights Attract Hatchling Marine Turtles Type Journal Article
Year 2006 Publication Chelonian Conservation and Biology Abbreviated Journal Chelonian Conservation and Biology
Volume 5 Issue (up) 2 Pages 255-261
Keywords Reptilia; Testudines; Cheloniidae; Loggerhead turtle; turtles; marine turtles; reptiles; Caretta caretta; Chelonia mydas; hatchlings; artificial lighting; light “trapping”; orientation; seafinding; Florida
Abstract On many nesting beaches, hatchling marine turtles are exposed to poled street lighting that disrupts their ability to crawl to the sea. Experiments were done to determine how hatchlings responded to street lighting transmitted through 2 filters that excluded the most disruptive wavelengths (those <&#8201;530 nm; those <&#8201;570 nm). Filtered lighting, however, also attracted the turtles though not as strongly as an unfiltered (high-pressure sodium vapor) lighting. Filtering is therefore of limited utility for light management, especially since other alternatives (such as lowering, shielding, or turning off unnecessary lighting; use of dimmer lights embedded in roadways) are more effective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1071-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 78
Permanent link to this record
 

 
Author Schoeman, M.C.
Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.
Volume 19 Issue (up) 2 Pages 120–130
Keywords Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus
Abstract Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.
Address School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-9430 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1223
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 15 Issue (up) 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record
 

 
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P.
Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems
Volume 19 Issue (up) 2 Pages 535–546
Keywords Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization
Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.
Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-8155 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1316
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G.
Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue (up) 2 Pages
Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity
Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:31936535 Approved no
Call Number GFZ @ kyba @ Serial 2818
Permanent link to this record