|   | 
Details
   web
Records
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P.
Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems
Volume 19 Issue 2 Pages 535–546
Keywords (up) Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization
Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.
Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-8155 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1316
Permanent link to this record
 

 
Author Van Doren, B.; Horton, K.G.; Dokter, A.M.; Klinck, H.; Elbin, S.B., Farnsworth, A.; Dokter, A.M; Klinck, H.; Elbin, S.B.; Farnsworth, A.
Title High-intensity urban light installation dramatically alters nocturnal bird migration Type Journal Article
Year 2017 Publication Publications of the National Academy of Sciences Abbreviated Journal PNAS
Volume 114 Issue 42 Pages 11175-11180
Keywords (up) Animals; artificial light; nocturnal migration; remote sensing; radar; ornithology; flight calls
Abstract Billions of nocturnally migrating birds move through increasingly photopolluted skies, relying on cues for navigation and orientation that artificial light at night (ALAN) can impair. However, no studies have quantified avian responses to powerful ground-based light sources in urban areas. We studied effects of ALAN on migrating birds by monitoring the beams of the National September 11 Memorial & Museum's “Tribute in Light” in New York, quantifying behavioral responses with radar and acoustic sensors and modeling disorientation and attraction with simulations. This single light source induced significant behavioral alterations in birds, even in good visibility conditions, in this heavily photopolluted environment, and to altitudes up to 4 km. We estimate that the installation influenced ≈1.1 million birds during our study period of 7 d over 7 y. When the installation was illuminated, birds aggregated in high densities, decreased flight speeds, followed circular flight paths, and vocalized frequently. Simulations revealed a high probability of disorientation and subsequent attraction for nearby birds, and bird densities near the installation exceeded magnitudes 20 times greater than surrounding baseline densities during each year’s observations. However, behavioral disruptions disappeared when lights were extinguished, suggesting that selective removal of light during nights with substantial bird migration is a viable strategy for minimizing potentially fatal interactions among ALAN, structures, and birds. Our results also highlight the value of additional studies describing behavioral patterns of nocturnally migrating birds in powerful lights in urban areas as well as conservation implications for such lighting installations.
Address Information Science Program, Cornell Lab of Ornithology, Ithaca, NY 14850 USA; af27{at}cornell.edu
Corporate Author Thesis
Publisher PNAS Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1091-6490 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1741
Permanent link to this record
 

 
Author Schoeman, M.C.
Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.
Volume 19 Issue 2 Pages 120–130
Keywords (up) Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus
Abstract Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.
Address School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-9430 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1223
Permanent link to this record
 

 
Author Wakefield, A.; Stone, E.L.; Jones, G.; Harris, S.
Title Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls Type Journal Article
Year 2015 Publication Royal Society Open Science Abbreviated Journal Roy. Soc. Open Sci.
Volume 2 Issue 8 Pages
Keywords (up) Animals; artificial lighting; light-emitting diode; street lights; bats; moth predation; Nyctalus
Abstract The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats.
Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1237
Permanent link to this record
 

 
Author Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G.
Title Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal
Volume Issue Pages 187-213
Keywords (up) Animals; bats; vertebrates; ecology; artificial light at night; climate change
Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.
Address School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-25218-6 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1320
Permanent link to this record