|   | 
Details
   web
Records
Author Jung, K.; Kalko, E.K.
Title Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment Type Journal Article
Year 2010 Publication Journal of Mammalogy Abbreviated Journal J. Mammal.
Volume 91 Issue 1 Pages 144-153
Keywords animals; flying mammals; acoustic monitoring; anthropogenic influence; artificial light; bat activity; Chiroptera; habitat plasticity; moon
Abstract Given worldwide rapid human population growth resulting in degradation or loss of habitats, it is important to understand how anthropogenic factors affect species presence and activity, and consequently, how well species tolerate or adapt to anthropogenically altered environments. This study, conducted in Panama, focuses on aerial insectivorous bats, a highly mobile and ecologically important, but largely understudied group. Acoustic monitoring was used to investigate habitat use in a tropical forest-town interface and microhabitat use around streetlights differing in wavelength (type of light) and accessibility (distance to vegetation). Plasticity in microhabitat use also was examined in relation to season and moonlight. We recorded a total of 25 aerial insectivorous bat species in the study area and found a subset of 20 species in town of which 18 frequently foraged around streetlights. Bat activity (passes/min) was lowest at the forest site, highest at streetlights, and intermediate in the dark areas of town. General bat activity at streetlights was concentrated at bluish-white lights compared to yellow-white and orange lights. However, bats revealed species-specific microhabitats with regard to light type, distance to vegetation, and relative light intensity. Season and moon phase affected microhabitat use around streetlights leading to microhabitat plasticity of individual species. Thus, in the forest-town interface most, but not all, aerial insectivorous bats were present in town and regularly foraged around streetlights, suggesting a species-specific tolerance for habitat alteration. Bats foraging at streetlights used microhabitats, and some species even changed microhabitats, according to season or moon phase. This indicates species-specific requirements for microhabitats and the importance of preserving habitat heterogeneity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1593
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M.
Title Temporal changes in artificial light exposure of marine turtle nesting areas Type Journal Article
Year 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 20 Issue 8 Pages 2437-2449
Keywords GIS analysis; artificial light; conservation planning; marine turtles; population resilience; temporal change
Abstract Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:24353164 Approved no
Call Number IDA @ john @ Serial 73
Permanent link to this record
 

 
Author den Outer, P.; Lolkema, D.; Haaima, M.; van der Hoff, R.; Spoelstra, H.; Schmidt, W.
Title Intercomparisons of nine sky brightness detectors Type Journal Article
Year 2011 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 11 Issue 10 Pages 9603-9612
Keywords Calibration; Darkness; *Extraterrestrial Environment; Humans; Light; Luminescent Measurements; Netherlands; *Optical Phenomena; Optics and Photonics/*instrumentation/*methods; Sky Quality Meter; artificial lighting; intercalibration; intercomparison; light pollution; night sky brightness
Abstract Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between +/-14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 +/- 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 +/- 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.
Address National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands. peter.den.outer@rivm.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:22163715; PMCID:PMC3231263 Approved no
Call Number IDA @ john @ Serial 196
Permanent link to this record
 

 
Author Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J.
Title Potential biological and ecological effects of flickering artificial light Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue 5 Pages e98631
Keywords flickering; artificial light; biology
Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24874801; PMCID:PMC4038456 Approved no
Call Number IDA @ john @ Serial 237
Permanent link to this record