|   | 
Details
   web
Records
Author Cho, H.M.; Lee, M.K.; Chang, S.J.; Kim, S.
Title Analysis on Luminance of Outdoor Signboards of Commercial Areas in Seoul at Night Considering Light Pollution Type Journal Article
Year 2015 Publication Journal of The Korean Society of Living Environment System Abbreviated Journal J. Korean Soc. Living Environ. Sys
Volume 22 Issue 4 Pages 583-595-589
Keywords Lighting; Light pollution; Commercial areas; Night-time lighting; Outdoor Signboards; Luminance; outdoor lighting; artificial light at night; signs; LED signs; LED billboards
Abstract As the city is commercialized, the number of stores is increased and it also makes outdoor billboards’ number increased accordingly. And signboards on the street make pedestrians unpleasant, making light pollution by light reflection. In this study, we measured the luminance to target the outdoor signboards of commercial area in Seoul. On the basis of the obtained results, the External system showed high luminance values, and the luminance values of Letter-type system were lower. Furthermore, the measured value at the midnight time was higher, and we considered that the more floating population bring about the high luminance value of the External system. The signboards of External system should be avoided, the Letter-type system should be recommended.
Address School of Architecture, Soongsil University, Seoul, Korea; skim(at)ssu.ac.kr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 1319
Permanent link to this record
 

 
Author Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G.
Title Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal
Volume Issue Pages 187-213
Keywords Animals; bats; vertebrates; ecology; artificial light at night; climate change
Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.
Address School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-25218-6 Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 1320
Permanent link to this record
 

 
Author Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Diez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernandez, A.; Nievas, M.
Title Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 181 Issue Pages 52-66
Keywords Skyglow; measurements; light pollution; artificial light at night; modeling; Madrid; Spain
Abstract We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.
Address Dept. Astrof´ısica y CC. de la Atm´osfera, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 1323
Permanent link to this record
 

 
Author Newman, R.C.; Ellis, T.; Davison, P.I.; Ives, M.J.; Thomas, R.J.; Griffiths, S.W.; Riley, W.D.
Title Using novel methodologies to examine the impact of artificial light at night on the cortisol stress response in dispersing Atlantic salmon (Salmo salarL.) fry Type Journal Article
Year 2015 Publication Conservation Physiology Abbreviated Journal Conserv Physiol
Volume 3 Issue 1 Pages cov051
Keywords Animals; salmon; Salmo salar; Artificial light at night; Atlantic salmon; cortisol
Abstract Artificial light at night (ALAN) is gaining recognition as having an important anthropogenic impact on the environment, yet the behavioural and physiological impacts of this stressor are largely unknown. This dearth of information is particularly true for freshwater ecosystems, which are already heavily impacted by anthropogenic pressures. Atlantic salmon (Salmo salar L.) is a species of conservation and economic importance whose ecology and behaviour is well studied, making it an ideal model species. Recent investigations have demonstrated that salmon show disrupted behaviour in response to artificial light; however, it is not yet clear which physiological processes are behind the observed behavioural modifications. Here, two novel non-invasive sampling methods were used to examine the cortisol stress response of dispersing salmon fry under different artificial lighting intensities. Fish egg and embryos were reared under differing ALAN intensities and individual measures of stress were subsequently taken from dispersing fry using static sampling, whereas population-level measures were achieved using deployed passive samplers. Dispersing fry exposed to experimental confinement showed elevated cortisol levels, indicating the capacity to mount a stress response at this early stage in ontogenesis. However, only one of the two methods for sampling cortisol used in this study indicated that ALAN may act as a stressor to dispersing salmon fry. As such, a cortisol-mediated response to light was not strongly supported. Furthermore, the efficacy of the two non-invasive methodologies used in this study is, subject to further validation, indicative of them proving useful in future ecological studies.
Address School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK. Tel: +44 (0) 2920 875 729; newmanrc(at)cardiff.ac.uk
Corporate Author Thesis
Publisher Oxford Journals Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2051-1434 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 1397
Permanent link to this record
 

 
Author Weishampel, Z.A.; Cheng, W.-H.; Weishampel, J.F.
Title Sea turtle nesting patterns in Florida vis-à-vis satellite-derived measures of artificial lighting Type Journal Article
Year 2016 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv
Volume 2 Issue 1 Pages 59-72
Keywords Animals; sea turtles; Artificial light; DMSP; light pollution; marine turtles; nest surveys; simultaneous autoregressive modeling; Florida; United States; Loggerhead turtle; Caretta caretta; Leatherback turtle; Dermochelys coriacea; Green turtle; Chelonia mydas
Abstract Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01–0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1–100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.
Address Department of Biology, University of Central Florida, Orlando, FL 32816 USA; John.Weishampel(at)ucf.edu
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number IDA @ john @ Serial 1346
Permanent link to this record