|   | 
Details
   web
Records
Author Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.; et al.
Title The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy Type Journal Article
Year 2010 Publication (up) Ecol Soc Abbreviated Journal
Volume 15 Issue 4 Pages
Keywords Ecology; artificial light; energy efficiency; lighting concept; light pollution; nightscape; policy; sustainability; transdisciplinary
Abstract Although the invention and widespread use of artificial light is clearly one of the most important human technological advances, the transformation of nightscapes is increasingly recognized as having adverse effects. Night lighting may have serious physiological consequences for humans, ecological and evolutionary implications for animal and plant populations, and may reshape entire ecosystems. However, knowledge on the adverse effects of light pollution is vague. In response to climate change and energy shortages, many countries, regions, and communities are developing new lighting programs and concepts with a strong focus on energy efficiency and greenhouse gas emissions. Given the dramatic increase in artificial light at night (0 – 20% per year, depending on geographic region), we see an urgent need for light pollution policies that go beyond energy efficiency to include human well-being, the structure and functioning of ecosystems, and inter-related socioeconomic consequences. Such a policy shift will require a sound transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend. Knowledge is also urgently needed on suitable lighting technologies and concepts which are ecologically, socially, and economically sustainable. Unless managing darkness becomes an integral part of future conservation and lighting policies, modern society may run into a global self-experiment with unpredictable outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 478
Permanent link to this record
 

 
Author Jiang, J.; He, Y.; Kou, H.; Ju, Z.; Gao, X.; Zhao, H.
Title The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations Type Journal Article
Year 2020 Publication (up) Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 108 Issue Pages 105702
Keywords Animals; Artificial light at night; Eurasian tree sparrow; Melatonin; Intestinal microbiota
Abstract Artificial light at night (ALAN) or light pollution is rapidly widespread with fast urbanization and becomes an obvious environmental disturbance. Recent studies showed ALAN has multiple negative impacts on a wide range of species including bird biological rhythm disruption, behavioral and physiological disturbance and hormone secretion disorder. However, its effects on bird gut microbiota are scarcely studied. In this study, we used Eurasian tree sparrow (Passer montanus), a widely distributed and locally abundant bird species in both urban and rural areas of China to examine the effects of ALAN on locomotor activity rhythm and melatonin secretion, and species diversity and community structure of intestinal microbiota by simulating urban and rural night light environment. Our results showed ALAN strongly affected circadian rhythm of locomotor activity with earlier start of activity before light-on and later rest after light-off. Moreover, ALAN significantly suppressed melatonin release. Last but not least, ALAN profoundly affected taxonomic compositions, species diversity and community structure of intestinal microbiota of birds. We concluded that ALAN may cause bird health damage by disrupting circadian rhythm, inhibiting melatonin release and altering intestinal microbiota. Melatonin hormone level and intestinal microbiota diversity may be important bioindicators for light pollution.
Address College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2781
Permanent link to this record
 

 
Author Troy, J.R.; Holmes, N.D.; Green, M.C.
Title Modeling artificial light viewed by fledgling seabirds Type Journal Article
Year 2011 Publication (up) Ecosphere Abbreviated Journal Ecosphere
Volume 2 Issue 10 Pages art109
Keywords artificial light; fallout; Hydrobatidae; modeling; Newell's Shearwater; Procellariidae; Puffinus newelli; birds
Abstract Artificial light is increasing in coverage across the surface of our planet, impacting the behavioral ecology of many organisms. Attraction to sources of artificial light is a significant threat to certain fledgling shearwaters, petrels (Procellariidae), and storm-petrels (Hydrobatidae) on their first nocturnal flights to the sea. Disorientation by light can cause these birds to crash into vegetation or manmade structures, potentially resulting in death from physical injury, starvation, dehydration, predation by introduced predators, or collisions with vehicles. We developed a GIS-based method to model the intensity of artificial light that fledgling procellariids and hydrobatids could view en route to the ocean (to estimate the degree of threat that artificial light poses to these birds) and present two models for the island of Kauai as examples. These models are particularly relevant to the federally threatened Newell's Shearwater, or `A`o (Puffinus newelli), of which >30,000 fledglings have been collected in response to disorientation by lights on Kauai during the past 30 years. Our models suggest that there are few to no portions of Kauai from which young birds could fledge and not view light on their post-natal nocturnal flights, which is concerning given evidence of a Newell's Shearwater population decline. In future work using this technique, night light intensity layers could be altered to model the effects of modified coastal light conditions on known and potential procellariid and hydrobatid breeding locations. Furthermore, certain methods presented herein may be applicable to other seabirds and additional taxa in which attraction to anthropogenic light poses a serious threat, including migratory passerines and hatchling marine turtles. Components of this modeling approach could potentially be used to spatially estimate effects of other point-source threats to ecological systems, including sound and air pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 60
Permanent link to this record
 

 
Author Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M.
Title Coastal light pollution and marine turtles: assessing the magnitude of the problem Type Journal Article
Year 2012 Publication (up) Endangered Species Research Abbreviated Journal Endang. Species. Res.
Volume 19 Issue 1 Pages 85-98
Keywords Artificial light; Orientation; Coastal development; GIS analysis; Vulnerability assessment; turtles; reptiles; animals; marine turtles; Australia; Queensland
Abstract Globally significant numbers of marine turtles nest on Australian beaches; however, the human population of Australia is also heavily concentrated around coastal areas. Coastal development brings with it increases in artificial light. Since turtles are vulnerable to disorientation from artificial light adjacent to nesting areas, the mitigation of disruption caused by light pollution has become an important component of marine turtle conservation strategies in Australia. However, marine turtles are faced with a multitude of anthropogenic threats and managers need to prioritise impacts to ensure limited conservation resources can result in adequate protection of turtles. Knowledge of the extent to which nesting areas may be vulnerable to light pollution is essential to guide management strategies. We use geographical information system analysis to over-lay turtle nesting data onto night-time lights data produced by the NOAA National Geophysical Data Center, to assess the proportion of marine turtles in Australia potentially at risk from light pollution. We also identify the Australian nesting sites which may face the greatest threat from artificial light. Our assessment indicates that the majority of nesting turtles appear to be at low risk, but population management units in Western Australia and Queensland are vulnerable to light pollution. The risk to turtles from light generated by industrial developments appears significantly higher than at any other location. Consequently, managers of turtle management units in regions of proposed or on-going industrial development should anticipate potentially disrupted turtle behaviour due to light pollution. Our methodology will be useful to managers of turtles elsewhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1863-5407 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 74
Permanent link to this record
 

 
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L.
Title Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
Year 2019 Publication (up) Environmental Research Abbreviated Journal Environ Res
Volume 180 Issue Pages 108823
Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage
Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.
Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes PMID:31627155 Approved no
Call Number GFZ @ kyba @ Serial 2702
Permanent link to this record