|   | 
Details
   web
Records
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A.
Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 11-23
Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification
Abstract Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.
Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1351
Permanent link to this record
 

 
Author Bliss-Ketchum, L.L.; de Rivera, C.E.; Turner, B.C.; Weisbaum, D.M.
Title The effect of artificial light on wildlife use of a passage structure Type Journal Article
Year 2016 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 199 Issue Pages 25-28
Keywords Animals; animal movement; Columbia black-tailed deer; deer; Odocoileus hemionus columbianus; deer mouse; Peromyscus maniculatus; opossum; Didelphis virginiana; artificial light at night
Abstract Barriers to animal movement can isolate populations, impacting their genetic diversity, susceptibility to disease, and access to resources. Barriers to movement may be caused by artificial light, which is known to disrupt bird, sea turtle, and bat behavior, but few studies have experimentally investigated the effects of artificial light on movement for a suite of terrestrial vertebrates. Therefore, we studied the effect of ecological light pollution on animal usage of a bridge under-road passage structure. On a weekly basis, sections of the structure were subjected to different light treatments including no light added, followed by a Reference period when lights were off in all the structure sections. Sand track data revealed use by 23 mammals, birds, reptiles and amphibians, nine of which had > 30 tracks for species-level analysis. Columbia black-tailed deer (Odocoileus hemionus columbianus) traversed under unlit bridge sections much less when neighboring sections were lit compared to when none were, suggesting avoidance due to any nearby presence of artificial light. Similarly, deer mouse (Peromyscus maniculatus) and opossum (Didelphis virginiana) track paths were less frequent in the lit sections than the ambient. Crossing was correlated with temporal or spatial factors but not light for three of the other species. These findings suggest that artificial light may be reducing habitat connectivity for some species though not providing a strong barrier for others. Such information is needed to inform mitigation of habitat fragmentation in the face of expanding urbanization.
Address Department of Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, USA; blissket(at)pdx.edu
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1445
Permanent link to this record
 

 
Author Bará, S.; Escofet, J.
Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans
Volume 205 Issue Pages 267-277
Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry
Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.
Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2163
Permanent link to this record
 

 
Author Jiang, J.; He, Y.; Kou, H.; Ju, Z.; Gao, X.; Zhao, H.
Title The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations Type Journal Article
Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 108 Issue Pages 105702
Keywords Animals; Artificial light at night; Eurasian tree sparrow; Melatonin; Intestinal microbiota
Abstract Artificial light at night (ALAN) or light pollution is rapidly widespread with fast urbanization and becomes an obvious environmental disturbance. Recent studies showed ALAN has multiple negative impacts on a wide range of species including bird biological rhythm disruption, behavioral and physiological disturbance and hormone secretion disorder. However, its effects on bird gut microbiota are scarcely studied. In this study, we used Eurasian tree sparrow (Passer montanus), a widely distributed and locally abundant bird species in both urban and rural areas of China to examine the effects of ALAN on locomotor activity rhythm and melatonin secretion, and species diversity and community structure of intestinal microbiota by simulating urban and rural night light environment. Our results showed ALAN strongly affected circadian rhythm of locomotor activity with earlier start of activity before light-on and later rest after light-off. Moreover, ALAN significantly suppressed melatonin release. Last but not least, ALAN profoundly affected taxonomic compositions, species diversity and community structure of intestinal microbiota of birds. We concluded that ALAN may cause bird health damage by disrupting circadian rhythm, inhibiting melatonin release and altering intestinal microbiota. Melatonin hormone level and intestinal microbiota diversity may be important bioindicators for light pollution.
Address College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2781
Permanent link to this record
 

 
Author Campaign to Protect Rural England
Title Night Blight: Mapping England’s light pollution and dark skies Type Report
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Skyglow; Remote Sensing; Artificial light at night; United Kingdom; Great Britain
Abstract We can now present the most accurate ever picture of how much light is spilling up into Britain’s night skies. Detailed interactive maps have been created for England

showing districts, counties, National Parks and Areas of Outstanding Natural Beauty (AONBs) and, at a wider scale, National Character Areas. Besides these, there are high-level maps available for Scotland and Wales, so that we can now

present the most accurate ever picture of how much light is spilling up into Britain’s night sky.
Address Campaign to Protect Rural England, 5-11 Lavington Street, London SE1 0NZ, United Kingdom; info(at)cpre.org.uk
Corporate Author Thesis
Publisher (down) Campaign to Protect Rural England Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1468
Permanent link to this record