|   | 
Details
   web
Records
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A.
Title Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett
Volume in press Issue Pages 134639
Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)
Abstract Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.
Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3940 ISBN Medium
Area Expedition Conference
Notes PMID:31760086 Approved no
Call Number GFZ @ kyba @ Serial 2760
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G.
Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 2 Pages
Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity
Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:31936535 Approved no
Call Number GFZ @ kyba @ Serial 2818
Permanent link to this record
 

 
Author Fasciani, I.; Petragnano, F.; Aloisi, G.; Marampon, F.; Rossi, M.; Francesca Coppolino, M.; Rossi, R.; Longoni, B.; Scarselli, M.; Maggio, R.
Title A new threat to dopamine neurons: the downside of artificial light Type Journal Article
Year 2020 Publication Neuroscience Abbreviated Journal Neuroscience
Volume in press Issue Pages in press
Keywords Review; Human Health; Parkinson's disease; artificial light; dopamine neurons; melatonin; opsins; photoactivation
Abstract Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.
Address Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy. Electronic address: roberto.maggio@univaq.it
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4522 ISBN Medium
Area Expedition Conference
Notes PMID:32142863 Approved no
Call Number GFZ @ kyba @ Serial 2839
Permanent link to this record
 

 
Author Leveau, L.M.
Title Artificial Light at Night (ALAN) Is the Main Driver of Nocturnal Feral Pigeon (Columba livia f. domestica) Foraging in Urban Areas Type Journal Article
Year 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)
Volume 10 Issue 4 Pages
Keywords Animals; Columba livia; Latin America; artificial light at night; circadian rhythm; noise; temporal homogenization
Abstract Artificial light at night (ALAN) is one of the most extreme environmental alterations in urban areas, which drives nocturnal activity in diurnal species. Feral Pigeon (Columba livia f. domestica), a common species in urban centers worldwide, has been observed foraging at night in urban areas. However, the role of ALAN in the nocturnal activity of this species is unknown. Moreover, studies addressing the relationship between ALAN and nocturnal activity of diurnal birds are scarce in the Southern Hemisphere. The objective of this study is to assess the environmental factors associated with nocturnal activity of the Feral Pigeon in Argentinian cities. Environmental conditions were compared between sites where pigeons were seen foraging and randomly selected sites where pigeons were not recorded foraging. Nocturnal foraging by the Feral Pigeon was recorded in three of four surveyed cities. ALAN was positively related to nocturnal foraging activity in Salta and Buenos Aires. The results obtained suggest that urbanization would promote nocturnal activity in Feral Pigeons. Moreover, nocturnal activity was mainly driven by ALAN, which probably alters the circadian rhythm of pigeons.
Address Departamento de Ecologia, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET – UBA), Ciudad Universitaria, Pab 2, Piso 4, Buenos Aires 1426, Argentina
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-2615 ISBN Medium
Area Expedition Conference
Notes PMID:32224903 Approved no
Call Number GFZ @ kyba @ Serial 2876
Permanent link to this record
 

 
Author Westby, K.M.; Medley, K.A.
Title Cold Nights, City Lights: Artificial Light at Night Reduces Photoperiodically Induced Diapause in Urban and Rural Populations of Aedes albopictus (Diptera: Culicidae) Type Journal Article
Year 2020 Publication Journal of Medical Entomology Abbreviated Journal J Med Entomol
Volume in press Issue Pages
Keywords Animals; Aedes albopictus; artificial light at night; common garden; diapause; urban ecology
Abstract As the planet becomes increasingly urbanized, it is imperative that we understand the ecological and evolutionary consequences of urbanization on species. One common attribute of urbanization that differs from rural areas is the prevalence of artificial light at night (ALAN). For many species, light is one of the most important and reliable environmental cues, largely governing the timing of daily and seasonal activity patterns. Recently, it has been shown that ALAN can alter behavioral, phenological, and physiological traits in diverse taxa. For temperate insects, diapause is an essential trait for winter survival and commences in response to declining daylight hours in the fall. Diapause is under strong selection pressure in the mosquito, Aedes albopictus (Skuse); local adaptation and rapid evolution has been observed along a latitudinal cline. It is unknown how ALAN affects this photosensitive trait or if local adaptation has occurred along an urbanization gradient. Using a common garden experiment, we experimentally demonstrated that simulated ALAN reduces diapause incidence in this species by as much as 40%. There was no difference, however, between urban and rural demes. We also calculated diapause incidence from wild demes in urban areas to determine whether wild populations exhibited lower than predicted incidence compared to estimates from total nocturnal darkness. In early fall, lower than predicted diapause incidence was recorded, but all demes reached nearly 100% diapause before terminating egg laying. It is possible that nocturnal resting behavior in vegetation limits the amount of ALAN exposure this species experiences potentially limiting local adaptation.
Address Tyson Research Center, Washington University in Saint Louis, Eureka, MO
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2585 ISBN Medium
Area Expedition Conference
Notes PMID:32638000 Approved no
Call Number GFZ @ kyba @ Serial 3042
Permanent link to this record