|   | 
Details
   web
Records
Author Verutes, G.M.; Huang, C.; Estrella, R.R.; Loyd, K.
Title Exploring scenarios of light pollution from coastal development reaching sea turtle nesting beaches near Cabo Pulmo, Mexico Type Journal Article
Year 2014 Publication Global Ecology and Conservation Abbreviated Journal Global Ecology and Conservation
Volume 2 Issue Pages 170-180
Keywords Artificial light; Viewshed analysis; Sea turtle conservation; Coastal resort management; InVEST; sea turtle; reptiles; marine reptiles; vertebrates; Mexico; Baja California
Abstract New coastal development may offer economic benefits to resort builders and even local communities, but these projects can also impact local ecosystems, key wildlife, and the draw for tourists. We explore how light from Cabo Cortés, a proposed coastal development in Baja California Sur, Mexico, may alter natural light cues used by sea turtle hatchlings. We adapt a viewshed approach to model exterior light originating from the resort under plausible zoning scenarios. This spatially explicit information allows stakeholders to evaluate the likely impact of alternative development options. Our model suggests that direct light’s ability to reach sea turtle nesting beaches varies greatly by source location and height—with some plausible development scenarios leading to significantly less light pollution than others. Our light pollution maps can enhance decision-making, offering clear guidance on where to avoid elevated lamps or when to recommend lighting restrictions. Communities can use this information to participate in development planning to mitigate ecological, aesthetic and economic impacts from artificial lighting. Though tested in Mexico, our approach and free, open-source software can be applied in other places around the world to better understand and manage the threats of light pollution to sea turtles.
Address Natural Capital Project, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2351-9894 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 368
Permanent link to this record
 

 
Author Rakshit, K.; Thomas, A.P.; Matveyenko, A.V.
Title Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Type Journal Article
Year 2014 Publication Current Diabetes Reports Abbreviated Journal Curr Diab Rep
Volume 14 Issue 4 Pages 474
Keywords *epidemiology; diabetes; Type 2 diabetes; beta cell; T2DM; artificial light; light exposure; circadian disruption
Abstract Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Address Larry L. Hillblom Islet Research Center, Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 900A Weyburn Place, Los Angeles, CA, 90095, USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4827 ISBN Medium
Area Expedition Conference
Notes PMID:24532160; PMCID:PMC3988110 Approved no
Call Number IDA @ john @ Serial (down) 320
Permanent link to this record
 

 
Author Davies, T.W.; Bennie, J.; Inger, R.; Gaston, K.J.
Title Artificial light alters natural regimes of night-time sky brightness Type Journal Article
Year 2013 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 3 Issue Pages
Keywords Artificial light; light at nightl skyglow; measurements
Abstract Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 255
Permanent link to this record
 

 
Author Fonken, L.K.; Nelson, R.J.
Title Illuminating the deleterious effects of light at night Type Journal Article
Year 2011 Publication F1000 Medicine Reports Abbreviated Journal F1000 Med Rep
Volume 3 Issue Pages 18
Keywords Human Health; light at night; artificial light; circadian disruption; Review
Abstract Technological advances, while providing many benefits, often create circumstances that differ from the conditions in which we evolved. With the wide-spread adoption of electrical lighting during the 20(th) century, humans became exposed to bright and unnatural light at night for the first time in their evolutionary history. Electrical lighting has led to the wide-scale practice of 24-hour shift-work and has meant that what were once just “daytime” activities now run throughout the night; in many ways Western society now functions on a 24-hour schedule. Recent research suggests that this gain in freedom to function throughout the night may also come with significant repercussions. Disruption of our naturally evolved light and dark cycles can result in a wide range of physiological and behavioral changes with potentially serious medical implications. In this article we will discuss several mechanisms through which light at night may exert its effects on cancer, mood, and obesity, as well as potential ways to ameliorate the impact of light at night.
Address Department of Neuroscience and The Institute for Behavioral Medicine Research The Ohio State University, Columbus, OH 43210 USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-5931 ISBN Medium
Area Expedition Conference
Notes PMID:21941596; PMCID:PMC3169904 Approved no
Call Number IDA @ john @ Serial (down) 241
Permanent link to this record
 

 
Author Inger, R.; Bennie, J.; Davies, T.W.; Gaston, K.J.
Title Potential biological and ecological effects of flickering artificial light Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue 5 Pages e98631
Keywords flickering; artificial light; biology
Abstract Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24874801; PMCID:PMC4038456 Approved no
Call Number IDA @ john @ Serial (down) 237
Permanent link to this record