|   | 
Details
   web
Records
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.
Title (up) Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 2015 Issue Pages 20140131
Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects
Abstract Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.
Address Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1128
Permanent link to this record
 

 
Author Isenstadt, S.; Petty, M.M.; Neumann, D.
Title (up) Cities of Light: Two Centuries of Urban Illumination Type Book Whole
Year 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords Lighting; urban; cities; outdoor lighting; artificial lighting; urban design; city planning; urban studies; urban history; infrastructure
Abstract Cities of Light is the first global overview of modern urban illumination, a development that allows human wakefulness to colonize the night, doubling the hours available for purposeful and industrious activities. Urban lighting is undergoing a revolution due to recent developments in lighting technology, and increased focus on sustainability and human-scaled environments. Cities of Light is expansive in coverage, spanning two centuries and touching on developments on six continents, without diluting its central focus on architectural and urban lighting. Covering history, geography, theory, and speculation in urban lighting, readers will have numerous points of entry into the book, finding it easy to navigate for a quick reference and or a coherent narrative if read straight through. With chapters written by respected scholars and highly-regarded contemporary practitioners, this book will delight students and practitioners of architectural and urban history, area and cultural studies, and lighting design professionals and the institutional and municipal authorities they serve. At a moment when the entire world is being reshaped by new lighting technologies and new design attitudes, the longer history of urban lighting remains fragmentary. Cities of Light aims to provide a global framework for historical studies of urban lighting and to offer a new perspective on the fast-moving developments of lighting today.
Address
Corporate Author Thesis
Publisher Routledge Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition First
ISSN ISBN 978-1138813915 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1086
Permanent link to this record
 

 
Author Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M.
Title (up) Coastal light pollution and marine turtles: assessing the magnitude of the problem Type Journal Article
Year 2012 Publication Endangered Species Research Abbreviated Journal Endang. Species. Res.
Volume 19 Issue 1 Pages 85-98
Keywords Artificial light; Orientation; Coastal development; GIS analysis; Vulnerability assessment; turtles; reptiles; animals; marine turtles; Australia; Queensland
Abstract Globally significant numbers of marine turtles nest on Australian beaches; however, the human population of Australia is also heavily concentrated around coastal areas. Coastal development brings with it increases in artificial light. Since turtles are vulnerable to disorientation from artificial light adjacent to nesting areas, the mitigation of disruption caused by light pollution has become an important component of marine turtle conservation strategies in Australia. However, marine turtles are faced with a multitude of anthropogenic threats and managers need to prioritise impacts to ensure limited conservation resources can result in adequate protection of turtles. Knowledge of the extent to which nesting areas may be vulnerable to light pollution is essential to guide management strategies. We use geographical information system analysis to over-lay turtle nesting data onto night-time lights data produced by the NOAA National Geophysical Data Center, to assess the proportion of marine turtles in Australia potentially at risk from light pollution. We also identify the Australian nesting sites which may face the greatest threat from artificial light. Our assessment indicates that the majority of nesting turtles appear to be at low risk, but population management units in Western Australia and Queensland are vulnerable to light pollution. The risk to turtles from light generated by industrial developments appears significantly higher than at any other location. Consequently, managers of turtle management units in regions of proposed or on-going industrial development should anticipate potentially disrupted turtle behaviour due to light pollution. Our methodology will be useful to managers of turtles elsewhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1863-5407 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 74
Permanent link to this record
 

 
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L.
Title (up) Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
Year 2019 Publication Environmental Research Abbreviated Journal Environ Res
Volume 180 Issue Pages 108823
Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage
Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.
Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes PMID:31627155 Approved no
Call Number GFZ @ kyba @ Serial 2702
Permanent link to this record
 

 
Author Rowse, E.G., Lewanzik, D.; Stone, E.L.; Harris, S.; Jones, G.
Title (up) Dark Matters: The Effects of Artificial Lighting on Bats Type Book Chapter
Year 2015 Publication Bats in the Anthropocene: Conservation of Bats in a Changing World Abbreviated Journal
Volume Issue Pages 187-213
Keywords Animals; bats; vertebrates; ecology; artificial light at night; climate change
Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights ; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance ; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slow-flying bats that forage in more confined spaces are often light-averse. Both high-pressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for light-averse bat specie.
Address School of Life Sciences, University of Bristol, Bristol, UK; Gareth.Jones(at)bristol.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor Voigt, C.C.; Kingston; T.
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-25218-6 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1320
Permanent link to this record