|   | 
Details
   web
Records
Author Rakshit, K.; Thomas, A.P.; Matveyenko, A.V.
Title (up) Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Type Journal Article
Year 2014 Publication Current Diabetes Reports Abbreviated Journal Curr Diab Rep
Volume 14 Issue 4 Pages 474
Keywords *epidemiology; diabetes; Type 2 diabetes; beta cell; T2DM; artificial light; light exposure; circadian disruption
Abstract Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Address Larry L. Hillblom Islet Research Center, Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 900A Weyburn Place, Los Angeles, CA, 90095, USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4827 ISBN Medium
Area Expedition Conference
Notes PMID:24532160; PMCID:PMC3988110 Approved no
Call Number IDA @ john @ Serial 320
Permanent link to this record
 

 
Author Dominoni, D.M.; Partecke, J.
Title (up) Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula) Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140118
Keywords Animals; urbanization; light pollution; artificial light at night; light loggers; daylength; photoperiod; Turdus merula; European blackbird
Abstract Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radiotelemetry,to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod.
Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; davide.dominoni@glasgow.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1117
Permanent link to this record
 

 
Author de Jong, M.; Jeninga, L.; Ouyang, J.Q.; van Oers, K.; Spoelstra, K.; Visser, M.E.
Title (up) Dose-dependent responses of avian daily rhythms to artificial light at night Type Journal Article
Year 2015 Publication Physiology & Behavior Abbreviated Journal Physiol Behav
Volume 155 Issue Pages 172-179
Keywords Animals; Artificial light at night; Circadian rhythm; Dose-response; Great tit; Light intensity; Melatonin; Parus major
Abstract Recent studies have shown that animals are affected by night-time light exposure. Light is a continuous variable, but our knowledge on how individuals react to different light intensities during the night is limited. We therefore determined the relationship between night light intensity and the behaviour and physiology of great tits (Parus major). We measured daily activity patterns and melatonin levels in 35 males exposed to five different light intensities and found strong, dose-dependent effects. Activity onset was increasingly advanced, and activity offset delayed with higher light intensities. Furthermore, night-time activity increased and melatonin levels measured at midnight decreased with higher intensities. In this experimental study, we demonstrate for the first time dose-dependent effects of artificial light at night on birds' daily activity patterns and melatonin levels. Our results imply that these effects are not limited to a certain threshold, but emerge even when nocturnal light levels are slightly increased. However, in a natural area, these effects may be limited as artificial light levels are commonly low; light intensities drop rapidly with distance from a light source and birds can avoid exposure to light at night. Future studies should thus focus on examining the impact of different intensities of light at night in the wild.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands; m.dejong(at)nioo.knaw.nl
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9384 ISBN Medium
Area Expedition Conference
Notes PMID:26703233 Approved no
Call Number IDA @ john @ Serial 1327
Permanent link to this record
 

 
Author van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D.
Title (up) Effect of spectral composition of artificial light on the attraction of moths Type Journal Article
Year 2011 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 144 Issue 9 Pages 2274-2281
Keywords insects; moths; artificial light; ecology; population dynamics
Abstract During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of artificial light on species richness and abundance of moths has not been studied systematically. Therefore, we tested the hypotheses that (1) higher species richness and higher abundances of moths are attracted to artificial light with smaller wavelengths than to light with larger wavelengths, and (2) this attraction is correlated with morphological characteristics of moths, especially their eye size. We indeed found higher species richness and abundances of moths in traps with lamps that emit light with smaller wavelengths. These lamps attracted moths with on average larger body mass, larger wing dimensions and larger eyes. Cascading effects on biodiversity and ecosystem functioning, e.g. pollination, can be expected when larger moth species are attracted to these lights. Predatory species with a diet of mainly larger moth species and plant species pollinated by larger moth species might then decline. Moreover, our results indicate a size-bias in trapping moths, resulting in an overrepresentation of larger moth species in lamps with small wavelengths. Our study indicates the potential use of lamps with larger wavelengths to effectively reduce the negative effect of light pollution on moth population dynamics and communities where moths play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 114
Permanent link to this record
 

 
Author Cho, Y.M.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J.
Title (up) Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment Type Journal Article
Year 2015 Publication Chronobiology International Abbreviated Journal Chronobiol. Int.
Volume 32 Issue 9 Pages 1294-1310
Keywords Artificial light at night; breast cancer; circadian rhythm; light exposure; light pollution
Abstract It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.
Address b Department of Preventive Medicine , College of Medicine, Korea University , Seoul , Republic of Korea
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:26375320 Approved no
Call Number IDA @ john @ Serial 1269
Permanent link to this record