|   | 
Details
   web
Records
Author Davies, T.W.; Bennie, J.; Inger, R.; Gaston, K.J.
Title (up) Artificial light alters natural regimes of night-time sky brightness Type Journal Article
Year 2013 Publication Scientific Reports Abbreviated Journal Sci. Rep.
Volume 3 Issue Pages
Keywords Artificial light; light at nightl skyglow; measurements
Abstract Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 255
Permanent link to this record
 

 
Author Leveau, L.M.
Title (up) Artificial Light at Night (ALAN) Is the Main Driver of Nocturnal Feral Pigeon (Columba livia f. domestica) Foraging in Urban Areas Type Journal Article
Year 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)
Volume 10 Issue 4 Pages
Keywords Animals; Columba livia; Latin America; artificial light at night; circadian rhythm; noise; temporal homogenization
Abstract Artificial light at night (ALAN) is one of the most extreme environmental alterations in urban areas, which drives nocturnal activity in diurnal species. Feral Pigeon (Columba livia f. domestica), a common species in urban centers worldwide, has been observed foraging at night in urban areas. However, the role of ALAN in the nocturnal activity of this species is unknown. Moreover, studies addressing the relationship between ALAN and nocturnal activity of diurnal birds are scarce in the Southern Hemisphere. The objective of this study is to assess the environmental factors associated with nocturnal activity of the Feral Pigeon in Argentinian cities. Environmental conditions were compared between sites where pigeons were seen foraging and randomly selected sites where pigeons were not recorded foraging. Nocturnal foraging by the Feral Pigeon was recorded in three of four surveyed cities. ALAN was positively related to nocturnal foraging activity in Salta and Buenos Aires. The results obtained suggest that urbanization would promote nocturnal activity in Feral Pigeons. Moreover, nocturnal activity was mainly driven by ALAN, which probably alters the circadian rhythm of pigeons.
Address Departamento de Ecologia, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET – UBA), Ciudad Universitaria, Pab 2, Piso 4, Buenos Aires 1426, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-2615 ISBN Medium
Area Expedition Conference
Notes PMID:32224903 Approved no
Call Number GFZ @ kyba @ Serial 2876
Permanent link to this record
 

 
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A.
Title (up) Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett
Volume in press Issue Pages 134639
Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)
Abstract Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.
Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3940 ISBN Medium
Area Expedition Conference
Notes PMID:31760086 Approved no
Call Number GFZ @ kyba @ Serial 2760
Permanent link to this record
 

 
Author Mathews, F.; Roche, N.; Aughney, T.; Jones, N.; Day, J.; Baker, J.; Langton, S.
Title (up) Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140124
Keywords Animals; Chiroptera; Nyctalus leisleri; Pipistrellus pipistrellus; pipistrelle bat; Leisler's bat; bats, mammals; artificial light at night; migration; fragmentation; vision; outdoor lighting
Abstract Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements—both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts—bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered ‘light-attracted’ and likely to benefit from the insect congregations that form at lights. Leisler's bat (Nyctalus leisleri) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats (Pipistrellus pipistrellus), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability.
Address Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK; f.mathews@exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1123
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title (up) Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume 15 Issue 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record