toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cho, Y.M.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. url  doi
openurl 
  Title Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal Chronobiol. Int.  
  Volume (down) 32 Issue 9 Pages 1294-1310  
  Keywords Artificial light at night; breast cancer; circadian rhythm; light exposure; light pollution  
  Abstract It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.  
  Address b Department of Preventive Medicine , College of Medicine, Korea University , Seoul , Republic of Korea  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26375320 Approved no  
  Call Number IDA @ john @ Serial 1269  
Permanent link to this record
 

 
Author Cho, H.M.; Lee, M.K.; Chang, S.J.; Kim, S. openurl 
  Title Analysis on Luminance of Outdoor Signboards of Commercial Areas in Seoul at Night Considering Light Pollution Type Journal Article
  Year 2015 Publication Journal of The Korean Society of Living Environment System Abbreviated Journal J. Korean Soc. Living Environ. Sys  
  Volume (down) 22 Issue 4 Pages 583-595-589  
  Keywords Lighting; Light pollution; Commercial areas; Night-time lighting; Outdoor Signboards; Luminance; outdoor lighting; artificial light at night; signs; LED signs; LED billboards  
  Abstract As the city is commercialized, the number of stores is increased and it also makes outdoor billboards’ number increased accordingly. And signboards on the street make pedestrians unpleasant, making light pollution by light reflection. In this study, we measured the luminance to target the outdoor signboards of commercial area in Seoul. On the basis of the obtained results, the External system showed high luminance values, and the luminance values of Letter-type system were lower. Furthermore, the measured value at the midnight time was higher, and we considered that the more floating population bring about the high luminance value of the External system. The signboards of External system should be avoided, the Letter-type system should be recommended.  
  Address School of Architecture, Soongsil University, Seoul, Korea; skim(at)ssu.ac.kr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1319  
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. url  doi
openurl 
  Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
  Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume (down) 21 Issue 2 Pages  
  Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity  
  Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31936535 Approved no  
  Call Number GFZ @ kyba @ Serial 2818  
Permanent link to this record
 

 
Author Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M. url  doi
openurl 
  Title Temporal changes in artificial light exposure of marine turtle nesting areas Type Journal Article
  Year 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume (down) 20 Issue 8 Pages 2437-2449  
  Keywords GIS analysis; artificial light; conservation planning; marine turtles; population resilience; temporal change  
  Abstract Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.  
  Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24353164 Approved no  
  Call Number IDA @ john @ Serial 73  
Permanent link to this record
 

 
Author Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. url  doi
openurl 
  Title Coastal light pollution and marine turtles: assessing the magnitude of the problem Type Journal Article
  Year 2012 Publication Endangered Species Research Abbreviated Journal Endang. Species. Res.  
  Volume (down) 19 Issue 1 Pages 85-98  
  Keywords Artificial light; Orientation; Coastal development; GIS analysis; Vulnerability assessment; turtles; reptiles; animals; marine turtles; Australia; Queensland  
  Abstract Globally significant numbers of marine turtles nest on Australian beaches; however, the human population of Australia is also heavily concentrated around coastal areas. Coastal development brings with it increases in artificial light. Since turtles are vulnerable to disorientation from artificial light adjacent to nesting areas, the mitigation of disruption caused by light pollution has become an important component of marine turtle conservation strategies in Australia. However, marine turtles are faced with a multitude of anthropogenic threats and managers need to prioritise impacts to ensure limited conservation resources can result in adequate protection of turtles. Knowledge of the extent to which nesting areas may be vulnerable to light pollution is essential to guide management strategies. We use geographical information system analysis to over-lay turtle nesting data onto night-time lights data produced by the NOAA National Geophysical Data Center, to assess the proportion of marine turtles in Australia potentially at risk from light pollution. We also identify the Australian nesting sites which may face the greatest threat from artificial light. Our assessment indicates that the majority of nesting turtles appear to be at low risk, but population management units in Western Australia and Queensland are vulnerable to light pollution. The risk to turtles from light generated by industrial developments appears significantly higher than at any other location. Consequently, managers of turtle management units in regions of proposed or on-going industrial development should anticipate potentially disrupted turtle behaviour due to light pollution. Our methodology will be useful to managers of turtles elsewhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1863-5407 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 74  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: