|   | 
Details
   web
Records
Author Schoeman, M.C.
Title Light pollution at stadiums favors urban exploiter bats: Selected urban exploiter bats hunt insects at stadiums Type Journal Article
Year 2015 Publication Animal Conservation Abbreviated Journal Anim. Conserv.
Volume (down) 19 Issue 2 Pages 120–130
Keywords Animals; artificial light; light pollution; Molossidae; predator–prey interactions; urban avoiders; urban exploiters; bats; bats; mammals; Chaerephon pumilus; Tadarida aegyptiaca; Otomops martiensseni; Mops condylurus
Abstract Artificial night lighting by humans may destabilize ecosystems by altering light-dependent biological processes of organisms and changing the availability of light and darkness as resources of food, information and refuge. I tested the hypothesis that urban exploiters should be more likely to utilize bright, unpredictable light pollution sources such as sport stadiums and building sites than urban avoiders. I quantified insectivorous bat activity and feeding attempts at seven sport stadiums under light and dark treatments using acoustic monitoring of echolocation calls. Species richness estimators indicated that stadium inventories were complete. Activity and feeding attempts were significantly higher at lit stadiums than dark stadiums, irrespective of season or surrounding human land use. Bats exhibited species-specific differences in utilization of stadiums. As predicted, four urban exploiters – Chaerephon pumilus, Tadarida aegyptiaca, Otomops martiensseni and Scotophilus dinganii – dominated activity and feeding attempts at lit stadiums, yet one urban exploiter – Mops condylurus – was associated with dark stadiums. Activity levels at both dark and light stadiums were negatively correlated with peak echolocation frequency. Landscape-scale and finer scale abiotic variables were poor predictors of bat activity and feeding attempts. My results suggest that in addition to abiotic processes associated with urbanization, light pollution at sport stadiums may homogenize urban bat diversity by favoring selected urban exploiters.
Address School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa; schoemanc(at)ukzn.ac.za
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-9430 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1223
Permanent link to this record
 

 
Author Clewley, G.D.; Plummer, K.E.; Robinson, R.A.; Simm, C.H.; Toms, M.P.
Title The effect of artificial lighting on the arrival time of birds using garden feeding stations in winter: A missed opportunity? Type Journal Article
Year 2015 Publication Urban Ecosystems Abbreviated Journal Urban Ecosystems
Volume (down) 19 Issue 2 Pages 535–546
Keywords Animals; Artificial light; Citizen science; Foraging; Garden birds; Supplementary feeding; Urbanization
Abstract The proliferation of artificial lighting at night is one of the key anthropogenic changes associated with urbanised areas as well as some non-urban areas. Disruption to natural light/dark regimes can have considerable effects on the timing of different behaviours of birds, particularly during the breeding season. However, the effect of artificial lights on the timing of behaviours during winter has received relatively little attention, despite the fact that time partitioning of foraging can have implications for avian winter survival. In this study, we assess at a landscape scale during winter, whether birds arrive at feeding stations earlier in areas with increased levels of artificial lighting using data from a citizen science project. Arrival times of the ten most commonly recorded species were associated with a combination of the density of artificial lights, temperature, rainfall and urban land cover. We found no evidence that birds advance the onset of foraging in gardens with more artificial lights nearby; contrary to our prediction, birds generally arrived later into these areas. This is possibly a response to differences in food availability or predation risk in areas with more artificial lights. We conclude that artificial light at night may not be as important for driving the timing of foraging behaviour in winter as previously thought, but it remains to be seen whether this represents a missed opportunity to extend the foraging period or an adaptive response.
Address British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK; gary.clewley(at)bto.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-8155 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1316
Permanent link to this record
 

 
Author Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.; et al.
Title The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy Type Journal Article
Year 2010 Publication Ecol Soc Abbreviated Journal
Volume (down) 15 Issue 4 Pages
Keywords Ecology; artificial light; energy efficiency; lighting concept; light pollution; nightscape; policy; sustainability; transdisciplinary
Abstract Although the invention and widespread use of artificial light is clearly one of the most important human technological advances, the transformation of nightscapes is increasingly recognized as having adverse effects. Night lighting may have serious physiological consequences for humans, ecological and evolutionary implications for animal and plant populations, and may reshape entire ecosystems. However, knowledge on the adverse effects of light pollution is vague. In response to climate change and energy shortages, many countries, regions, and communities are developing new lighting programs and concepts with a strong focus on energy efficiency and greenhouse gas emissions. Given the dramatic increase in artificial light at night (0 – 20% per year, depending on geographic region), we see an urgent need for light pollution policies that go beyond energy efficiency to include human well-being, the structure and functioning of ecosystems, and inter-related socioeconomic consequences. Such a policy shift will require a sound transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend. Knowledge is also urgently needed on suitable lighting technologies and concepts which are ecologically, socially, and economically sustainable. Unless managing darkness becomes an integral part of future conservation and lighting policies, modern society may run into a global self-experiment with unpredictable outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 478
Permanent link to this record
 

 
Author Keshet-Sitton, A.; Or-Chen, K.; Yitzhak, S.; Tzabary, I.; Haim, A.
Title Can Avoiding Light at Night Reduce the Risk of Breast Cancer? Type Journal Article
Year 2015 Publication Integrative Cancer Therapies Abbreviated Journal Integr Cancer Ther
Volume (down) 15 Issue 2 Pages 145-152
Keywords Human Health; artificial light at night; breast cancer; latency period; rural; short wavelength illumination; urban; oncogenesis; oncology; epidemiology
Abstract Excessive exposure to artificial light at night (ALAN) suppresses nocturnal melatonin (MLT) production in the pineal gland and is, therefore, associated with an increased risk of breast cancer (BC). We examined indoor and outdoor light habits of 278 women, BC patients (n = 93), and controls (n = 185; 2010-2014). Cases and controls were age and residential area matched. Data regarding behavior in the sleeping habitat in a 5-year period, 10 to 15 years prior to disease diagnosis, were collected using a questionnaire. Sleep quality, bedtime, sleep duration, TV watching habits, presleeping reading habits, subjective illumination intensity, and type of illumination were collected. Binary logistic regression models were used to calculate odds ratios with 95% confidence intervals (ORs with 95% CIs) for BC patients in relation to those habits. OR results revealed that women who had slept longer (controls), 10 to 15 years before the time of the study, in a period of 5 years, had a significant (OR = 0.74; 95% CI = 0.57-0.97; P < .03) reduced BC risk. Likewise, women who had been moderately exposed to ALAN as a result of reading using bed light (reading lamp) illumination and women who had slept with closed shutters reduced their BC risk: OR = 0.81, 95% CI = 0.67-0.97, P < .02, and OR = 0.82, 95% CI = 0.68-0.99, P < .04, respectively. However, women who had been exposed to ALAN as a result of living near strong illumination sources were at a significantly higher BC risk (OR = 1.52; 95% CI = 1.10-2.12; P < .01). These data support the hypothesis that diminishing nighttime light exposure will diminish BC risk and incidence. This hypothesis needs to be tested directly using available testing strategies and technologies that continuously measure an individual's light exposure, its timing, and sleep length longitudinally and feed this information back to the individual, so that BC risk can be distinguished prospectively.
Address Atalya Keshet-Sitton, Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, Mount Carmel, Haifa 31905, Israel. atalyaks(at)gmail.com
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7354 ISBN Medium
Area Expedition Conference
Notes PMID:26631258 Approved no
Call Number IDA @ john @ Serial 1314
Permanent link to this record
 

 
Author Rakshit, K.; Thomas, A.P.; Matveyenko, A.V.
Title Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Type Journal Article
Year 2014 Publication Current Diabetes Reports Abbreviated Journal Curr Diab Rep
Volume (down) 14 Issue 4 Pages 474
Keywords *epidemiology; diabetes; Type 2 diabetes; beta cell; T2DM; artificial light; light exposure; circadian disruption
Abstract Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Address Larry L. Hillblom Islet Research Center, Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 900A Weyburn Place, Los Angeles, CA, 90095, USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4827 ISBN Medium
Area Expedition Conference
Notes PMID:24532160; PMCID:PMC3988110 Approved no
Call Number IDA @ john @ Serial 320
Permanent link to this record