|   | 
Details
   web
Records
Author Rakshit, K.; Thomas, A.P.; Matveyenko, A.V.
Title Does disruption of circadian rhythms contribute to beta-cell failure in type 2 diabetes? Type Journal Article
Year (down) 2014 Publication Current Diabetes Reports Abbreviated Journal Curr Diab Rep
Volume 14 Issue 4 Pages 474
Keywords *epidemiology; diabetes; Type 2 diabetes; beta cell; T2DM; artificial light; light exposure; circadian disruption
Abstract Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches.
Address Larry L. Hillblom Islet Research Center, Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 900A Weyburn Place, Los Angeles, CA, 90095, USA
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-4827 ISBN Medium
Area Expedition Conference
Notes PMID:24532160; PMCID:PMC3988110 Approved no
Call Number IDA @ john @ Serial 320
Permanent link to this record
 

 
Author Verutes, G.M.; Huang, C.; Estrella, R.R.; Loyd, K.
Title Exploring scenarios of light pollution from coastal development reaching sea turtle nesting beaches near Cabo Pulmo, Mexico Type Journal Article
Year (down) 2014 Publication Global Ecology and Conservation Abbreviated Journal Global Ecology and Conservation
Volume 2 Issue Pages 170-180
Keywords Artificial light; Viewshed analysis; Sea turtle conservation; Coastal resort management; InVEST; sea turtle; reptiles; marine reptiles; vertebrates; Mexico; Baja California
Abstract New coastal development may offer economic benefits to resort builders and even local communities, but these projects can also impact local ecosystems, key wildlife, and the draw for tourists. We explore how light from Cabo Cortés, a proposed coastal development in Baja California Sur, Mexico, may alter natural light cues used by sea turtle hatchlings. We adapt a viewshed approach to model exterior light originating from the resort under plausible zoning scenarios. This spatially explicit information allows stakeholders to evaluate the likely impact of alternative development options. Our model suggests that direct light’s ability to reach sea turtle nesting beaches varies greatly by source location and height—with some plausible development scenarios leading to significantly less light pollution than others. Our light pollution maps can enhance decision-making, offering clear guidance on where to avoid elevated lamps or when to recommend lighting restrictions. Communities can use this information to participate in development planning to mitigate ecological, aesthetic and economic impacts from artificial lighting. Though tested in Mexico, our approach and free, open-source software can be applied in other places around the world to better understand and manage the threats of light pollution to sea turtles.
Address Natural Capital Project, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2351-9894 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 368
Permanent link to this record
 

 
Author Bará, S.
Title Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough Type Journal Article
Year (down) 2014 Publication Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 87852G, 2013 Abbreviated Journal Proc. SPIE 8785
Volume 8785 Issue Pages
Keywords *Lighting; LED; light emitting diode; outdoor lighting; artificial light at night; lighting policy; solid-state lighting; blue light
Abstract Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled conditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a tailored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.
Address Univ. de Santiago de Compostela, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1135
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M.
Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
Year (down) 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 82 Issue 2 Pages 478-485
Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank
Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.
Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:23190422 Approved no
Call Number IDA @ john @ Serial 44
Permanent link to this record
 

 
Author Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M.
Title Temporal changes in artificial light exposure of marine turtle nesting areas Type Journal Article
Year (down) 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 20 Issue 8 Pages 2437-2449
Keywords GIS analysis; artificial light; conservation planning; marine turtles; population resilience; temporal change
Abstract Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:24353164 Approved no
Call Number IDA @ john @ Serial 73
Permanent link to this record