|   | 
Details
   web
Records
Author Johansen, N.S.; Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Shipp, L.
Title In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops Type Journal Article
Year 2011 Publication Annals of Applied Biology Abbreviated Journal
Volume 159 Issue 1 Pages 1-27
Keywords Behaviour; biology; insects; light intensity; mites; photobiology; photoperiod; photoreceptors; plant protection; visual ecology; wavelength distribution
Abstract Novel lighting technology offers the possibility of improved arthropod integrated pest management (IPM) in artificially lighted crops. This review compiles the current knowledge on how greenhouse pest and beneficial arthropods are directly affected by light, with the focus on whiteflies. The effect of ultraviolet depletion on orientation and colour-coded phototaxis are to some extent studied and utilised for control of the flying adult stage of some pest species, but far less is known about the visual ecology of commercially used biological control agents and pollinators, and about how light affects arthropod biology in different life stages. Four approaches for utilisation of artificial light in IPM of whiteflies are suggested: (a) use of attractive visual stimuli incorporated into traps for monitoring and direct control, (b) use of visual stimuli that disrupt the host-detection process, (c) radiation with harmful or inhibitory wavelengths to kill or suppress pest populations and (d) use of time cues to manipulate daily rhythms and photoperiodic responses. Knowledge gaps are identified to design a road map for research on IPM in crops lighted with high-pressure sodium lamps, light-emitting diodes (LEDs) and photoselective films. LEDs are concluded to offer possibilities for behavioural manipulation of arthropods, but the extent of such possibilities depends in practice on which wavelength combinations are determined to be optimal for plant production. Furthermore, the direct effects of artificial lighting on IPM must be studied in the context of plant-mediated effects of artificial light on arthropods, as both types of manipulations are possible, particularly with LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-4746 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 112
Permanent link to this record
 

 
Author Kaniewska, P.; Alon, S.; Karako-Lampert, S.; Hoegh-Guldberg, O.; Levy, O.
Title Signaling cascades and the importance of moonlight in coral broadcast mass spawning Type Journal Article
Year 2015 Publication eLife Abbreviated Journal
Volume 4 Issue Pages e09991
Keywords Animals; coral; chronobiology; reproductive strategies; reproductive synchronization; Great Barrier Reef; neurohormones; marine; oceans; invertebrates
Abstract Many reef-building corals participate in a mass-spawning event that occurs yearly on the Great Barrier Reef. This coral reproductive event is one of earth's most prominent examples of synchronised behavior, and coral reproductive success is vital to the persistence of coral reef ecosystems. Although several environmental cues have been implicated in the timing of mass spawning, the specific sensory cues that function together with endogenous clock mechanisms to ensure accurate timing of gamete release are largely unknown. Here, we show that moonlight is an important external stimulus for mass spawning synchrony and describe the potential mechanisms underlying the ability of corals to detect environmental triggers for the signaling cascades that ultimately result in gamete release. Our study increases the understanding of reproductive chronobiology in corals and strongly supports the hypothesis that coral gamete release is achieved by a complex array of potential neurohormones and light-sensing molecules.
Address Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Australia; oveh(at)uq.edu.au
Corporate Author Thesis
Publisher eLife Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-084X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1321
Permanent link to this record
 

 
Author Kantermann, T.; Roenneberg, T.
Title Is light-at-night a health risk factor or a health risk predictor? Type Journal Article
Year 2009 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 26 Issue 6 Pages 1069-1074
Keywords *Chronobiology Disorders; Circadian Rhythm; Environmental Exposure; Humans; *Light; Neoplasms; Risk Factors
Abstract In 2007, the IARC (WHO) has classified “shift-work that involves circadian disruption” as potentially carcinogenic. Ample evidence leaves no doubt that shift-work is detrimental for health, but the mechanisms behind this effect are not well understood. The hormone melatonin is often considered to be a causal link between night shift and tumor development. The underlying “light-at-night” (LAN) hypothesis is based on the following chain of arguments: melatonin is a hormone produced under the control of the circadian clock at night, and its synthesis can be suppressed by light; as an indolamine, it potentially acts as a scavenger of oxygen radicals, which in turn can damage DNA, which in turn can cause cancer. Although there is no experimental evidence that LAN is at the basis of increased cancer rates in shiftworkers, the scenario “light at night can cause cancer” influences research, medicine, the lighting industry and (via the media) also the general public, well beyond shiftwork. It is even suggested that baby-lights, TVs, computers, streetlights, moonlight, emergency lights, or any so-called “light pollution” by urban developments cause cancer via the mechanisms proposed by the LAN hypothesis. Our commentary addresses the growing concern surrounding light pollution. We revisit the arguments of the LAN theory and put them into perspective regarding circadian physiology, physical likelihood (e.g., what intensities reach the retina), and potential risks, specifically in non-shiftworkers.
Address Institute for Medical Psychology, University of Munich LMU, Munich, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:19731106 Approved no
Call Number IDA @ john @ Serial 134
Permanent link to this record
 

 
Author Karatsoreos, I.N.
Title Effects of circadian disruption on mental and physical health Type Journal Article
Year 2012 Publication Current Neurology and Neuroscience Reports Abbreviated Journal Curr Neurol Neurosci Rep
Volume 12 Issue 2 Pages 218-225
Keywords Chronobiology Disorders/*complications/genetics; Circadian Clocks/genetics; Cognition Disorders/*etiology/genetics; Humans; Metabolic Diseases/*etiology/genetics; Obesity/*etiology/genetics
Abstract Circadian (daily) rhythms in physiology and behavior are phylogenetically ancient and are present in almost all plants and animals. In mammals, these rhythms are generated by a master circadian clock in the suprachiasmatic nucleus of the hypothalamus, which in turn synchronizes “peripheral oscillators” throughout the brain and body in almost all cell types and organ systems. Although circadian rhythms are phylogenetically ancient, modern industrialized society and the ubiquity of electric lighting has resulted in a fundamental alteration in the relationship between an individual's endogenous circadian rhythmicity and the external environment. The ramifications of this desynchronization for mental and physical health are not fully understood, although numerous lines of evidence are emerging that link defects in circadian timing with negative health outcomes. This article explores the function of the circadian system, the effects of disrupted clocks on the brain and body, and how these effects impact mental and physical health.
Address Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, 205 Wegner Hall, Pullman, WA 99164, USA. iliak@vetmed.wsu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-4042 ISBN Medium
Area Expedition Conference
Notes PMID:22322663 Approved no
Call Number IDA @ john @ Serial 146
Permanent link to this record
 

 
Author Kavcic, P.; Rojc, B.; Dolenc-Groselj, L.; Claustrat, B.; Fujs, K.; Poljak, M.
Title The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans Type Journal Article
Year 2011 Publication Croatian Medical Journal Abbreviated Journal Croat Med J
Volume 52 Issue 5 Pages 594-603
Keywords genomics; epigenetics; hPer2; hBmal1; clock genes; gene expression; biology; human health
Abstract Aim

To examine the effect of acute sleep deprivation under light conditions on the expression of two key clock genes, hPer2 and hBmal1, in peripheral blood mononuclear cells (PBMC) and on plasma melatonin and cortisol levels.

Methods

Blood samples were drawn from 6 healthy individuals at 4-hour intervals for three consecutive nights, including a night of total sleep deprivation (second night). The study was conducted in April-June 2006 at the University Medical Centre Ljubljana.

Results

We found a significant diurnal variation in hPer2 and hBmal1 expression levels under baseline (P < 0.001, F = 19.7, df = 30 for hPer2 and P < 0.001, F = 17.6, df = 30 for hBmal1) and sleep-deprived conditions (P < 0.001, F = 9.2, df = 30 for hPer2 and P < 0.001, F = 13.2, df = 30 for hBmal1). Statistical analysis with the single cosinor method revealed circadian variation of hPer2 under baseline and of hBmal1 under baseline and sleep-deprived conditions. The peak expression of hPer2 was at 13:55 ± 1:15 hours under baseline conditions and of hBmal1 at 16:08 ± 1:18 hours under baseline and at 17:13 ± 1:35 hours under sleep-deprived conditions. Individual cosinor analysis of hPer2 revealed a loss of circadian rhythm in 3 participants and a phase shift in 2 participants under sleep-deprived conditions. The plasma melatonin and cortisol rhythms confirmed a conventional alignment of the central circadian pacemaker to the habitual sleep/wake schedule.

Conclusion

Our results suggest that 40-hour acute sleep deprivation under light conditions may affect the expression of hPer2 in PBMCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0353-9504 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 135
Permanent link to this record