|   | 
Details
   web
Records
Author Elvidge, C.; Zhizhin, M.; Hsu, F.-C.; Baugh, K.
Title VIIRS Nightfire: Satellite Pyrometry at Night Type Journal Article
Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 5 Issue 9 Pages 4423-4449
Keywords SNPP; VIIRS; fire detection; gas flaring; biomass burning; fossil fuel carbon emissions
Abstract The Nightfire algorithm detects and characterizes sub-pixel hot sources using multispectral data collected globally, each night, by the Suomi National Polar Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The spectral bands utilized span visible, near-infrared (NIR), short-wave infrared (SWIR), and mid-wave infrared (MWIR). The primary detection band is in the SWIR, centered at 1.6 μm. Without solar input, the SWIR spectral band records sensor noise, punctuated by high radiant emissions associated with gas flares, biomass burning, volcanoes, and industrial sites such as steel mills. Planck curve fitting of the hot source radiances yields temperature (K) and emission scaling factor (ESF). Additional calculations are done to estimate source size (m2), radiant heat intensity (W/m2), and radiant heat (MW). Use of the sensor noise limited M7, M8, and M10 spectral bands at night reduce scene background effects, which are widely reported for fire algorithms based on MWIR and long-wave infrared. High atmospheric transmissivity in the M10 spectral band reduces atmospheric effects on temperature and radiant heat retrievals. Nightfire retrieved temperature estimates for sub-pixel hot sources ranging from 600 to 6,000 K. An intercomparison study of biomass burning in Sumatra from June 2013 found Nightfire radiant heat (MW) to be highly correlated to Moderate Resolution Imaging Spectrometer (MODIS) Fire Radiative Power (MW).
Address Earth Observation Group, NOAA National Geophysical Data Center, Boulder, CO 80305, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 199
Permanent link to this record
 

 
Author Gaston, K.J.
Title Sustainability: A green light for efficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7451 Pages 560-561
Keywords Editorial; Animals; Atmosphere/chemistry; Carbon Dioxide/analysis; Circadian Rhythm/physiology; Conservation of Energy Resources/economics/*methods/*trends; Global Warming/prevention & control; Humans; Lighting/*economics/instrumentation/statistics & numerical data/*trends; Public Health
Abstract
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK. k.j.gaston@exeter.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23719447 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 459
Permanent link to this record
 

 
Author Hölker, F.; Wurzbacher, C.; Weißenborn, C.; Monaghan, M.T.; Holzhauer, S.I.J.; Premke, K.
Title Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night Type Journal Article
Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 370 Issue Pages 20140130
Keywords Animals; DNA metabarcoding; next-generation sequencing; light pollution; photoautotrophs; diatoms; Cyanobacteria; primary production; carbon turnover; freshwater
Abstract An increasing proportion of the Earth's surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Mu¨ggelseedamm 301/310, Berlin 12587, Germany; hoelker@igb-berlin.de
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1127
Permanent link to this record
 

 
Author Jones, B.A.
Title Spillover health effects of energy efficiency investments: Quasi-experimental evidence from the Los Angeles LED streetlight program Type Journal Article
Year 2018 Publication Journal of Environmental Economics and Management Abbreviated Journal Journal of Environmental Economics and Management
Volume 88 Issue Pages 283-299
Keywords Human Health; LED; public health; outdoor lighting; Los Angeles; economics; energy efficiency; breast cancer; fossil fuel carbon emissions
Abstract Payback estimates of energy efficiency investments often ignore public health externalities. This is problematic in cases where spillover health effects are substantial, such as when the application of new technology alters environmental exposures. When health externalities are included in return on investment calculations, energy efficiency programs may look more or less attractive than suggested by conventional “energy savings only” estimates. This analysis exploits the quasi-experiment provided by the 2009 Los Angeles (LA) LED streetlight efficiency program to investigate the returns on investments inclusive of an originally estimated health externality. Using the synthetic control method, we find that the LED streetlight program is associated with a lagged increase in breast cancer mortality of 0.479 per 100,000. Inclusive of the effects of LEDs on breast cancer and avoided carbon emissions, the LA LED program provides a −146.2% 10-year return compared to +118.2% when health outcomes and carbon emissions are ignored.
Address Department of Economics, University of New Mexico, 1 UNM Drive, MSC 05 3060, Albuquerque, NM, 87131, USA; bajones(at)unm.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0095-0696 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1976
Permanent link to this record
 

 
Author Zubidat, A.E.; Fares, B.; Fares, F.; Haim, A.
Title Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways Type Journal Article
Year 2018 Publication Cancer Control : Journal of the Moffitt Cancer Center Abbreviated Journal Cancer Control
Volume 25 Issue 1 Pages 1073274818812908
Keywords Human Health; 6-Smt; Cfl; EE-halogen; GDM-levels; body mass; carbon; corticosterone; cosinor analysis; light at night; yellow-LED
Abstract Lighting technology is rapidly advancing toward shorter wavelength illuminations that offer energy-efficient properties. Along with this advantage, the increased use of such illuminations also poses some health challenges, particularly breast cancer progression. Here, we evaluated the effects of artificial light at night (ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA methylation, tumor growth, metastases formation, and urinary corticosterone levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results revealed an inverse dose-dependent relationship between wavelength and melatonin suppression. Short wavelength increased tumor growth, promoted lung metastases formation, and advanced DNA hypomethylation, while long wavelength lessened these effects. Melatonin treatment counteracted these effects and resulted in reduced cancer burden. The wavelength suppression threshold for melatonin-induced tumor growth was 500 nm. These results suggest that short wavelength increases cancer burden by inducing aberrant DNA methylation mediated by the suppression of melatonin. Additionally, melatonin suppression and global DNA methylation are suggested as promising biomarkers for early diagnosis and therapy of breast cancer. Finally, ALAN may manifest other physiological responses such as stress responses that may challenge the survival fitness of the animal under natural environments.
Address 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1073-2748 ISBN Medium
Area Expedition Conference
Notes PMID:30477310; PMCID:PMC6259078 Approved no
Call Number IDA @ john @ Serial 2143
Permanent link to this record