toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Asher, A.; Shabtay, A.; Brosh, A.; Eitam, H.; Agmon, R.; Cohen-Zinder, M.; Zubidat, A.E.; Haim, A. url  doi
openurl 
  Title “Chrono-functional milk”: The difference between melatonin concentrations in night-milk versus day-milk under different night illumination conditions Type Journal Article
  Year 2015 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 32 Issue 10 Pages 1409-1416  
  Keywords Animals; Heart rate; illumination; melatonin; night-milk; chronobiology  
  Abstract Pineal melatonin (MLT) is produced at highest levels during the night, under dark conditions. We evaluated differences in MLT-concentration by comparing daytime versus night time milk samples, from two dairy farms with different night illumination conditions: (1) natural dark (Dark-Night); (2) short wavelength Artificial Light at Night (ALAN, Night-Illuminated). Samples were collected from 14 Israeli Holstein cows from each commercial dairy farm at 04:30 h (“Night-milk”) 12:30 h (“Day-milk”) and analyzed for MLT-concentration. In order to study the effects of night illumination conditions on cows circadian rhythms, Heart Rate (HR) daily rhythms were recorded. MLT-concentrations of Night-milk samples from the dark-night group were significantly (p < 0.001) higher than those of Night-illuminated conditions (30.70 +/- 1.79 and 17.81 +/- 0.33 pg/ml, respectively). Interestingly, night illumination conditions also affected melatonin concentrations at daytime where under Dark-Night conditions values are significantly (p < 0.001) higher than Night-Illuminated conditions, (5.36 +/- 0.33 and 3.30 +/- 0.18 pg/ml, respectively). There were no significant differences between the two treatments in the milk yield and milk composition except somatic cell count (SCC), which was significantly lower (p = 0.02) in the Dark-Night group compared with the Night-Illuminated group. Cows in both groups presented a significant (p < 0.01) HR daily rhythm, therefore we assume that in the night illuminated cows feeding and milking time are the “time keeper”, while in the Dark-night cows, HR rhythms were entrained by the light/dark cycle. The higher MLT-concentration in Dark-night cows with the lower SCC values calls upon farmers to avoid exposure of cows to ALAN. Therefore, under Dark-night conditions milk quality will improve by lowering SCC values where separation between night and day of such milk can produce chrono-functional milk, naturally rich with MLT.  
  Address b Department of Evolutionary and Environmental Biology , Faculty of Natural Sciences, The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa , Mount Carmel , Haifa , Israel  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26588495 Approved no  
  Call Number IDA @ john @ Serial 1312  
Permanent link to this record
 

 
Author Chang, A.-M.; Aeschbacha, D.; Duffy, J.F.; Czeislera, C.A. url  openurl
  Title Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness Type Journal Article
  Year 2015 Publication Proceedings of the National Academy of Sciences of the United States of America Academy of Sciences Abbreviated Journal PNAS  
  Volume 112 Issue 4 Pages 1232–1237  
  Keywords Human Health; sleep; chronobiology; phase-shifting; digital media; electronics; melatonin; Circadian disruption  
  Abstract In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength–enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.  
  Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1079  
Permanent link to this record
 

 
Author Cornean, R.E.; Margescu, M.; Simionescu, B. url  openurl
  Title Disruption of the Cyrcadian System and Obesity Type Journal Article
  Year 2015 Publication Jurnalul Pediatrului Abbreviated Journal Jurnalul Pediatrului  
  Volume XVIII Issue Supplement 3 Pages 38-42  
  Keywords Human Health; sleep deprivation; circadian rhythms; *Chronobiology Disorders; chronodisruption; obesity  
  Abstract Disruption of the cyrcadian system is a relatively new concept incriminated as being responsible for obesity, cardiovascular involvement, cognitive impairment, premature aging and last but not least, cancer. Because obesity is undoubtedly assimilated today to the medical conditions related to the disruption of the normal chronobiology, this paper presents the pivotal role of chronodisruption in the neuroendocrine control of appetite among these patients.  
  Address University of Medicine and Pharmacy "Iuliu Hatieganu” Cluj – Napoca, Romania; recornean(as)yahoo.com  
  Corporate Author Thesis  
  Publisher Romanian Society of Pediatric Surgery Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2065-4855 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1349  
Permanent link to this record
 

 
Author Dauchy, Robert T; Dauchy, Erin M; Tirrell, Robert P; Hill, Cody R; Davidson, Leslie K; Greene, Michael W; Tirrell, Paul C; Wu, Jinghai; Sauer, Leonard A; Blask, David E url  openurl
  Title Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats Type Journal Article
  Year 2010 Publication Comparative Medicine Abbreviated Journal  
  Volume 60 Issue 5 Pages 348-356  
  Keywords Animals; Chronobiology Disorders; Rats  
  Abstract Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 &#956;W/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 &#956;W/cm(2) light at night), or 3) constant bright light (123 &#956;W/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1582  
Permanent link to this record
 

 
Author Dickerman, B.; Liu, J. url  doi
openurl 
  Title Does current scientific evidence support a link between light at night and breast cancer among female night-shift nurses? Review of evidence and implications for occupational and environmental health nurses Type Journal Article
  Year 2012 Publication Workplace Health & Safety Abbreviated Journal Workplace Health Saf  
  Volume 60 Issue 6 Pages 273-81; quiz 282  
  Keywords Human Health; Breast Neoplasms/*epidemiology/nursing; Chronobiology Disorders/*epidemiology/nursing; Education, Nursing, Continuing; Environmental Health; Evidence-Based Nursing; Female; Humans; Light; Night Care/*statistics & numerical data; *Occupational Health Nursing; Risk Factors; *Work Schedule Tolerance  
  Abstract Breast cancer is increasingly prevalent in industrialized regions of the world, and exposure to light at night (LAN) has been proposed as a potential risk factor. Epidemiological observations have documented an increased breast cancer risk among female night-shift workers, and strong experimental evidence for this relationship has also been found in rodent models. Indirect support for the LAN hypothesis comes from studies involving blind women, sleep duration, bedroom light levels, and community nighttime light levels. This article reviews the literature, discusses possible mechanisms of action, and provides recommendations for occupational health nursing research, practice, and education. Research is needed to further explore the relationship between exposure to LAN and breast cancer risk and elucidate the mechanisms underlying this relationship before interventions can be designed for prevention and mitigation of breast cancer.  
  Address MultiCare Good Samaritan Hospital, Puyallup, WA, USA. barbra.dickerman@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2165-0799 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22658734 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: