toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J. url  doi
openurl 
  Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1763 Pages (down) 20130593  
  Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization  
  Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23740778; PMCID:PMC3774226 Approved no  
  Call Number IDA @ john @ Serial 42  
Permanent link to this record
 

 
Author Revell, V.L.; Molina, T.A.; Eastman, C.I. url  doi
openurl 
  Title Human phase response curve to intermittent blue light using a commercially available device Type Journal Article
  Year 2012 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume 590 Issue Pt 19 Pages (down) 4859-4868  
  Keywords Adolescent; Adult; Circadian Clocks/physiology/*radiation effects; Female; Humans; *Light; Male; Melatonin/analysis/physiology; Saliva/chemistry; Young Adult; blue light  
  Abstract Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 x 6.6 cm at approximately 50 cm, approximately 200 muW cm(-2), approximately 185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light-dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.  
  Address University of Surrey, Guildford, Surrey GU2 7XH, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22753544; PMCID:PMC3487041 Approved no  
  Call Number IDA @ john @ Serial 345  
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages (down) 1554-1558  
  Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
 

 
Author Savvidis, C.; Koutsilieris, M. url  doi
openurl 
  Title Circadian rhythm disruption in cancer biology Type Journal Article
  Year 2012 Publication Molecular Medicine (Cambridge, Mass.) Abbreviated Journal Mol Med  
  Volume 18 Issue Pages (down) 1249-1260  
  Keywords Human Health; Animals; CLOCK Proteins/genetics/metabolism; Circadian Clocks/genetics; *Circadian Rhythm/genetics; Environment; Humans; Melatonin/metabolism; Neoplasms/genetics/pathology/*physiopathology/therapy  
  Abstract Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized “shiftwork that involves circadian disruption [as] probably carcinogenic to humans” (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes.  
  Address Department of Endocrinology and Metabolism, Hippocration General Hospital, Athens, Greece. csavvidis@med.uoa.gr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1076-1551 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22811066; PMCID:PMC3521792 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 514  
Permanent link to this record
 

 
Author Lahti, T.; Merikanto, I.; Partonen, T. url  doi
openurl 
  Title Circadian clock disruptions and the risk of cancer Type Journal Article
  Year 2012 Publication Annals of Medicine Abbreviated Journal Ann Med  
  Volume 44 Issue 8 Pages (down) 847-853  
  Keywords Human Health; Cell Division; Chronobiology Disorders/*complications/genetics/*physiopathology; Circadian Clocks/*genetics; Humans; Neoplasms/*etiology; Work Schedule Tolerance/physiology  
  Abstract Disrupted circadian rhythms may lead to failures in the control of the cell division cycle and the subsequent malignant cell growth. In order to understand the pathogenesis of cancer more in detail, it is crucial to identify those mechanisms of action which contribute to the loss of control of the cell division cycle. This mini-review focuses on the recent findings concerning the links between the human circadian clock and cancer. Clinical implications concern not only feasible methods for the assessment of the circadian time of an individual or for the determination of the best time for administration of a drug of treatment, but also in the future genetic tests for screening and for planning treatment.  
  Address Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0785-3890 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23072403 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 513  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: