toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, M.-D.; Li, C.-M.; Wang, Z. url  openurl
  Title The Role of Circadian Clocks in Metabolic Disease Type Journal Article
  Year 2012 Publication Yale Journal of Biology and Medicine Abbreviated Journal  
  Volume 85 Issue 3 Pages 387–401  
  Keywords Animals; circadian clocks; metabolism; metabolic disease  
  Abstract The circadian clock is a highly conserved timing system, resonating physiological processes to 24-hour environmental cycles. Circadian misalignment is emerging as a risk factor of metabolic disease. The molecular clock resides in all metabolic tissues, the dysfunction of which is associated with perturbed energy metabolism. In this article, we will review current knowledge about molecular mechanisms of the circadian clock and the role of clocks in the physiology and pathophysiology of metabolic tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 392  
Permanent link to this record
 

 
Author Dominoni, D.M.; Helm, B.; Lehmann, M.; Dowse, H.B.; Partecke, J. url  doi
openurl 
  Title Clocks for the city: circadian differences between forest and city songbirds Type Journal Article
  Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci  
  Volume 280 Issue 1763 Pages 20130593  
  Keywords Animals; Circadian Clocks/*physiology; Circadian Rhythm; Cities; *Ecosystem; Light; Male; Songbirds/classification/*physiology; Trees; Urbanization; birds; chronotype; circadian rhythms; light at night; radio-telemetry; urbanization  
  Abstract To keep pace with progressing urbanization organisms must cope with extensive habitat change. Anthropogenic light and noise have modified differences between day and night, and may thereby interfere with circadian clocks. Urbanized species, such as birds, are known to advance their activity to early morning and night hours. We hypothesized that such modified activity patterns are reflected by properties of the endogenous circadian clock. Using automatic radio-telemetry, we tested this idea by comparing activity patterns of free-living forest and city European blackbirds (Turdus merula). We then recaptured the same individuals and recorded their activity under constant conditions. City birds started their activity earlier and had faster but less robust circadian oscillation of locomotor activity than forest conspecifics. Circadian period length predicted start of activity in the field, and this relationship was mainly explained by fast-paced and early-rising city birds. Although based on only two populations, our findings point to links between city life, chronotype and circadian phenotype in songbirds, and potentially in other organisms that colonize urban habitats, and highlight that urban environments can significantly modify biologically important rhythms in wild organisms.  
  Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78479, Germany. ddominoni@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23740778; PMCID:PMC3774226 Approved no  
  Call Number IDA @ john @ Serial 42  
Permanent link to this record
 

 
Author Karatsoreos, I.N. url  doi
openurl 
  Title Effects of circadian disruption on mental and physical health Type Journal Article
  Year 2012 Publication Current Neurology and Neuroscience Reports Abbreviated Journal Curr Neurol Neurosci Rep  
  Volume 12 Issue 2 Pages 218-225  
  Keywords Chronobiology Disorders/*complications/genetics; Circadian Clocks/genetics; Cognition Disorders/*etiology/genetics; Humans; Metabolic Diseases/*etiology/genetics; Obesity/*etiology/genetics  
  Abstract Circadian (daily) rhythms in physiology and behavior are phylogenetically ancient and are present in almost all plants and animals. In mammals, these rhythms are generated by a master circadian clock in the suprachiasmatic nucleus of the hypothalamus, which in turn synchronizes “peripheral oscillators” throughout the brain and body in almost all cell types and organ systems. Although circadian rhythms are phylogenetically ancient, modern industrialized society and the ubiquity of electric lighting has resulted in a fundamental alteration in the relationship between an individual's endogenous circadian rhythmicity and the external environment. The ramifications of this desynchronization for mental and physical health are not fully understood, although numerous lines of evidence are emerging that link defects in circadian timing with negative health outcomes. This article explores the function of the circadian system, the effects of disrupted clocks on the brain and body, and how these effects impact mental and physical health.  
  Address Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, 205 Wegner Hall, Pullman, WA 99164, USA. iliak@vetmed.wsu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-4042 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22322663 Approved no  
  Call Number IDA @ john @ Serial 146  
Permanent link to this record
 

 
Author Sahar, S.; Sassone-Corsi, P. url  doi
openurl 
  Title Regulation of metabolism: the circadian clock dictates the time Type Journal Article
  Year 2012 Publication Trends in Endocrinology and Metabolism: TEM Abbreviated Journal Trends Endocrinol Metab  
  Volume 23 Issue 1 Pages 1-8  
  Keywords Animals; Chronobiology Disorders/metabolism; *Circadian Clocks; *Circadian Rhythm; Circadian Rhythm Signaling Peptides and Proteins/metabolism; *Energy Metabolism; Humans; Metabolome  
  Abstract Circadian rhythms occur with a periodicity of approximately 24h and regulate a wide array of metabolic and physiologic functions. Accumulating epidemiological and genetic evidence indicates that disruption of circadian rhythms can be directly linked to many pathological conditions, including sleep disorders, depression, metabolic syndrome and cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of cellular metabolism. Although the circadian clock regulates multiple metabolic pathways, metabolite availability and feeding behavior can in turn regulate the circadian clock. An in-depth understanding of this reciprocal regulation of circadian rhythms and cellular metabolism may provide insights into the development of therapeutic intervention against specific metabolic disorders.  
  Address Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92697, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1043-2760 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22169754; PMCID:PMC3259741 Approved no  
  Call Number IDA @ john @ Serial 151  
Permanent link to this record
 

 
Author Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. url  doi
openurl 
  Title Breast cancer and circadian disruption from electric lighting in the modern world Type Journal Article
  Year 2014 Publication CA: a Cancer Journal for Clinicians Abbreviated Journal CA Cancer J Clin  
  Volume 64 Issue 3 Pages 207-218  
  Keywords breast neoplasms; circadian clock; melatonin production; shift work; sleep duration; oncogenesis  
  Abstract Breast cancer is the leading cause of cancer death among women worldwide, and there is only a limited explanation of why. Risk is highest in the most industrialized countries but also is rising rapidly in the developing world. Known risk factors account for only a portion of the incidence in the high-risk populations, and there has been considerable speculation and many false leads on other possibly major determinants of risk, such as dietary fat. A hallmark of industrialization is the increasing use of electricity to light the night, both within the home and without. It has only recently become clear that this evolutionarily new and, thereby, unnatural exposure can disrupt human circadian rhythmicity, of which three salient features are melatonin production, sleep, and the circadian clock. A convergence of research in cells, rodents, and humans suggests that the health consequences of circadian disruption may be substantial. An innovative experimental model has shown that light at night markedly increases the growth of human breast cancer xenografts in rats. In humans, the theory that light exposure at night increases breast cancer risk leads to specific predictions that are being tested epidemiologically: evidence has accumulated on risk in shift workers, risk in blind women, and the impact of sleep duration on risk. If electric light at night does explain a portion of the breast cancer burden, then there are practical interventions that can be implemented, including more selective use of light and the adoption of recent advances in lighting technology and application. CA Cancer J Clin 2014;64:207-218. ((c)) 2013 American Cancer Society.  
  Address Professor, Department of Community Medicine, University of Connecticut Health Center, Farmington, CT  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-9235 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24604162; PMCID:PMC4038658 Approved no  
  Call Number IDA @ john @ Serial 155  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: