toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Buijs, F.N.; Leon-Mercado, L.; Guzman-Ruiz, M.; Guerrero-Vargas, N.N.; Romo-Nava, F.; Buijs, R.M. url  doi
openurl 
  Title The Circadian System: A Regulatory Feedback Network of Periphery and Brain Type Journal Article
  Year 2016 Publication Physiology (Bethesda, Md.) Abbreviated Journal Physiology (Bethesda)  
  Volume 31 Issue 3 Pages 170-181  
  Keywords Human health; circadian rhythm; suprachiasmatic nucleus; brain; clock genes; SCN; review; circadian desynchronization; shiftwork  
  Abstract Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems.  
  Address Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico; ruudbuijs(at)gmail.com  
  Corporate Author Thesis  
  Publisher American Physiological Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1548-9221 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27053731 Approved no  
  Call Number IDA @ john @ Serial 1429  
Permanent link to this record
 

 
Author Dong, K.; Goyarts, E.C.; Pelle, E.; Trivero, J.; Pernodet, N. url  doi
openurl 
  Title Blue Light disrupts the circadian rhythm and create damage in skin cells Type Journal Article
  Year 2019 Publication International Journal of Cosmetic Science Abbreviated Journal Int J Cosmet Sci  
  Volume 41 Issue 6 Pages 558-562  
  Keywords Human Health; Circadian disruption; Skin; Clock genes  
  Abstract On a daily basis, the skin is exposed to many environmental stressors and insults. Over a 24-hr natural cycle, during the day, the skin is focused on protection; while at night, the skin is focused on repairing damage that occurred during daytime and getting ready for the next morning. Circadian rhythm provides the precise timing mechanism for engaging those different pathways necessary to keep a healthy skin through clock genes that are present in all skin cells. The strongest clue for determining cellular functions timing is through sensing light or absence of light (darkness). Here, we asked the question if blue light could be a direct entrainment signal to skin cells and also disrupt their circadian rhythm at night. Through a reporter assay for per1 transcription, we demonstrate that blue light at 410nm decreases per1 transcription in keratinocytes, showing that epidermal skin cells can sense light directly and control their own clock gene expression. This triggers cells to “think” it is daytime even at nighttime. Elsewhere, we measured different skin cell damage due to blue light exposure (at different doses and times of exposure) versus cells that were kept in full darkness. We show an increase of ROS production, DNA damage and inflammatory mediators. These deleterious effects can potentially increase overall skin damage over time and ultimately accelerates aging.  
  Address Materials Science & Engineering, Stony Brook University, Stony Brook  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-5463 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31418890 Approved no  
  Call Number GFZ @ kyba @ Serial 2618  
Permanent link to this record
 

 
Author Fonken, L.K.; Nelson, R.J. url  doi
openurl 
  Title The Effects of Light at Night on Circadian Clocks and Metabolism Type Book Chapter
  Year 2014 Publication Endocrine Reviews Abbreviated Journal Endocr Rev  
  Volume 35 Issue 4 Pages 648-670  
  Keywords Human Health; Circadian Rhythm; clock genes; epidemiology; light at night; review  
  Abstract Most organisms display endogenously produced approximately ~24 h fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.  
  Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210 USA  
  Corporate Author Thesis  
  Publisher Endocrine Society Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-769X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24673196 Approved no  
  Call Number IDA @ john @ Serial 314  
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
  Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 28 Issue 4 Pages 262-271  
  Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity  
  Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.  
  Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23929553; PMCID:PMC4033305 Approved no  
  Call Number IDA @ john @ Serial 28  
Permanent link to this record
 

 
Author Kavcic, P.; Rojc, B.; Dolenc-Groselj, L.; Claustrat, B.; Fujs, K.; Poljak, M. url  doi
openurl 
  Title The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans Type Journal Article
  Year 2011 Publication Croatian Medical Journal Abbreviated Journal Croat Med J  
  Volume 52 Issue 5 Pages 594-603  
  Keywords genomics; epigenetics; hPer2; hBmal1; clock genes; gene expression; biology; human health  
  Abstract Aim

To examine the effect of acute sleep deprivation under light conditions on the expression of two key clock genes, hPer2 and hBmal1, in peripheral blood mononuclear cells (PBMC) and on plasma melatonin and cortisol levels.

Methods

Blood samples were drawn from 6 healthy individuals at 4-hour intervals for three consecutive nights, including a night of total sleep deprivation (second night). The study was conducted in April-June 2006 at the University Medical Centre Ljubljana.

Results

We found a significant diurnal variation in hPer2 and hBmal1 expression levels under baseline (P < 0.001, F = 19.7, df = 30 for hPer2 and P < 0.001, F = 17.6, df = 30 for hBmal1) and sleep-deprived conditions (P < 0.001, F = 9.2, df = 30 for hPer2 and P < 0.001, F = 13.2, df = 30 for hBmal1). Statistical analysis with the single cosinor method revealed circadian variation of hPer2 under baseline and of hBmal1 under baseline and sleep-deprived conditions. The peak expression of hPer2 was at 13:55 ± 1:15 hours under baseline conditions and of hBmal1 at 16:08 ± 1:18 hours under baseline and at 17:13 ± 1:35 hours under sleep-deprived conditions. Individual cosinor analysis of hPer2 revealed a loss of circadian rhythm in 3 participants and a phase shift in 2 participants under sleep-deprived conditions. The plasma melatonin and cortisol rhythms confirmed a conventional alignment of the central circadian pacemaker to the habitual sleep/wake schedule.

Conclusion

Our results suggest that 40-hour acute sleep deprivation under light conditions may affect the expression of hPer2 in PBMCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0353-9504 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 135  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: