toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Hoglund, J.; Mitkus, M.; Olsson, P.; Lind, O.; Drews, A.; Bloch, N.I.; Kelber, A.; Strandh, M. url  doi
openurl 
  Title Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: retinal transcriptomes and ocular media transmittance Type Journal Article
  Year 2019 Publication Vision Research Abbreviated Journal Vision Res  
  Volume 158 Issue Pages 109-119  
  Keywords Animals; Vision; Birds; owls; Short-eared Owl; tawny owl; boreal owl; Long-eared Owl; Asio otus; Asio flammeus; Strix aluco; Aegolius funereus; cones; Photoreceptors  
  Abstract Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.  
  Address Department of Biology, Lund University, Lund, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0042-6989 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825468 Approved no  
  Call Number GFZ @ kyba @ Serial 2245  
Permanent link to this record
 

 
Author (up) Mouland, J.W.; Martial, F.; Watson, A.; Lucas, R.J.; Brown, T.M. url  doi
openurl 
  Title Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight Type Journal Article
  Year 2019 Publication Current Biology Abbreviated Journal Current Biology  
  Volume 29 Issue 24 Pages 4260-4267.e4  
  Keywords Animals; Circadian Rhythm; mouse models; cones  
  Abstract In humans, short-wavelength light evokes larger circadian responses than longer wavelengths. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm and gives rise to the popular view that ‘‘blue’’ light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation be- tween perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals, the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian sys- tem. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing ‘‘blue’’), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin (‘‘yellow’’). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3/) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.  
  Address Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; timothy.brown(at)manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Cell Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2785  
Permanent link to this record
 

 
Author (up) Niklaus, S.; Albertini, S.; Schnitzer, T.K.; Denk, N. url  doi
openurl 
  Title Challenging a Myth and Misconception: Red-Light Vision in Rats Type Journal Article
  Year 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)  
  Volume 10 Issue 3 Pages  
  Keywords animals; cones; electroretinogram; husbandry; photoreceptors; rat; red light; retina; rods  
  Abstract Due to the lack of L-cones in the rodent retina, it is generally assumed that red light is invisible to rodents. Thus, red lights and red filter foils are widely used in rodent husbandry and experimentation allowing researchers to observe animals in an environment that is thought to appear dark to the animals. To better understand red-light vision in rodents, we assessed retinal sensitivity of pigmented and albino rats to far-red light by electroretinogram. We examined the sensitivity to red light not only on the light- but also dark-adapted retina, as red observation lights in husbandry are used during the dark phase of the light cycle. Intriguingly, both rods and cones of pigmented as well as albino rats show a retinal response to red light, with a high sensitivity of the dark-adapted retina and large electroretinogram responses in the mesopic range. Our results challenge the misconception of rodents being red-light blind. Researchers and housing facilities should rethink the use of red observation lights at night.  
  Address Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche Innovation Center Basel, 4070 Basel, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32138167 Approved no  
  Call Number GFZ @ kyba @ Serial 2844  
Permanent link to this record
 

 
Author (up) Zele, A.J.; Cao, D. url  doi
openurl 
  Title Vision under mesopic and scotopic illumination Type Journal Article
  Year 2014 Publication Frontiers in Psychology Abbreviated Journal Front Psychol  
  Volume 5 Issue Pages 1594  
  Keywords vision; color; cones; mesopic; photopic; rods; scotopic; temporal  
  Abstract Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.  
  Address Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago Chicago, IL, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-1078 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25657632; PMCID:PMC4302711 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: