|   | 
Details
   web
Records
Author Sullivan, J.M.; Flannagan, M.J.
Title Determining the potential safety benefit of improved lighting in three pedestrian crash scenarios Type Journal Article
Year 2007 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 39 Issue 3 Pages 638-647
Keywords Lighting; Accidents, Traffic/*prevention & control/statistics & numerical data; Automobile Driving/*psychology; Darkness/*adverse effects; *Environment Design; Humans; Lighting/*standards; Prevalence; Risk; *Safety; Time; *Visual Perception; *Walking
Abstract The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.
Address The University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109-2150, USA. jsully@umich.edu <jsully@umich.edu>
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:17126278 Approved no
Call Number LoNNe @ kagoburian @ Serial 648
Permanent link to this record
 

 
Author Warrant, E.
Title Vision in the dimmest habitats on earth Type Journal Article
Year 2004 Publication Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology Abbreviated Journal J Comp Physiol A Neuroethol Sens Neural Behav Physiol
Volume 190 Issue 10 Pages 765-789
Keywords Animals; Circadian Rhythm/physiology; *Darkness; Eye/anatomy & histology; Fishes/physiology; Invertebrates; Oceans and Seas; Ocular Physiological Phenomena; Orientation/physiology; Space Perception/physiology; Vision, Ocular/*physiology
Abstract A very large proportion of the world's animal species are active in dim light, either under the cover of night or in the depths of the sea. The worlds they see can be dim and extended, with light reaching the eyes from all directions at once, or they can be composed of bright point sources, like the multitudes of stars seen in a clear night sky or the rare sparks of bioluminescence that are visible in the deep sea. The eye designs of nocturnal and deep-sea animals have evolved in response to these two very different types of habitats, being optimised for maximum sensitivity to extended scenes, or to point sources, or to both. After describing the many visual adaptations that have evolved across the animal kingdom for maximising sensitivity to extended and point-source scenes, I then use case studies from the recent literature to show how these adaptations have endowed nocturnal animals with excellent vision. Nocturnal animals can see colour and negotiate dimly illuminated obstacles during flight. They can also navigate using learned terrestrial landmarks, the constellations of stars or the dim pattern of polarised light formed around the moon. The conclusion from these studies is clear: nocturnal habitats are just as rich in visual details as diurnal habitats are, and nocturnal animals have evolved visual systems capable of exploiting them. The same is certainly true of deep-sea animals, as future research will no doubt reveal.
Address Vision Group, Department of Cell and Organism Biology, University of Lund, Helgonavagen 3, 22362 Lund, Sweden. Eric.Warrant@cob.lu.se
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-7594 ISBN Medium
Area Expedition Conference
Notes PMID:15375626 Approved no
Call Number IDA @ john @ Serial 33
Permanent link to this record
 

 
Author Wood, J.M.; Tyrrell, R.A.; Carberry, T.P.
Title Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
Year 2005 Publication Human Factors Abbreviated Journal Hum Factors
Volume 47 Issue 3 Pages 644-653
Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception
Abstract This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.
Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-7208 ISBN Medium
Area Expedition Conference
Notes PMID:16435703 Approved no
Call Number GFZ @ kyba @ Serial 2804
Permanent link to this record