|   | 
Details
   web
Records
Author Boyce, P.R.
Title Review: The Impact of Light in Buildings on Human Health Type Journal Article
Year 2010 Publication Indoor and Built Environment Abbreviated Journal Indoor and Built Environment
Volume 19 Issue 1 Pages 8-20
Keywords Human Health; indoor light; circadian disruption; shift work; oncogenesis; Review
Abstract The effects of light on health can be divided into three sections. The first is that of light as radiation. Exposure to the ultraviolet, visible, and infrared radiation produced by light sources can damage both the eye and skin, through both thermal and photochemical mechanisms. Such damage is rare for indoor lighting installations designed for vision but can occur in some situations. The second is light operating through the visual system. Lighting enables us to see but lighting conditions that cause visual discomfort are likely to lead to eyestrain. Anyone who frequently experiences eyestrain is not enjoying the best of health. The lighting conditions that cause visual discomfort in buildings are well known and easily avoided. The third is light operating through the circadian system. This is known to influence sleep patterns and believed to be linked to the development of breast cancer among night shift workers. There is still much to learn about the impact of light on human health but what is known is enough to ensure that the topic requires the attention of all those concerned with the lighting of buildings.
Address Rensselaer Polytechnic Institute, New York, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-326X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 292
Permanent link to this record
 

 
Author Cajochen, C.; Frey, S.; Anders, D.; Spati, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O.
Title Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance Type Journal Article
Year 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)
Volume 110 Issue 5 Pages 1432-1438
Keywords Adult; Circadian Rhythm/*physiology/radiation effects; Cognition/*physiology/radiation effects; *Computer Terminals; Humans; Light; Lighting/*methods; Male; Photic Stimulation/*methods; Radiation Dosage; Semiconductors; *Task Performance and Analysis; Young Adult; blue light; sleep; circadian disruption
Abstract Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian x m(2)) [W/(sr x m(2))], 2.1 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr x m(2)), 0.7 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by “explicit timing”; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
Address Centre for Chronobiology, Psychiatric Hospitals of the University of Basel, Basel, Switzerland. christian.cajochen@upkbs.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-7567 ISBN Medium
Area Expedition Conference
Notes PMID:21415172 Approved no
Call Number IDA @ john @ Serial 293
Permanent link to this record
 

 
Author Chang, A.-M.; Aeschbacha, D.; Duffy, J.F.; Czeislera, C.A.
Title Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness Type Journal Article
Year 2015 Publication Proceedings of the National Academy of Sciences of the United States of America Academy of Sciences Abbreviated Journal PNAS
Volume 112 Issue 4 Pages 1232–1237
Keywords Human Health; sleep; chronobiology; phase-shifting; digital media; electronics; melatonin; Circadian disruption
Abstract In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength–enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.
Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1079
Permanent link to this record
 

 
Author Cornean, R.E.; Margescu, M.; Simionescu, B.
Title Disruption of the Cyrcadian System and Obesity Type Journal Article
Year 2015 Publication Jurnalul Pediatrului Abbreviated Journal Jurnalul Pediatrului
Volume XVIII Issue Supplement 3 Pages 38-42
Keywords Human Health; sleep deprivation; circadian rhythms; *Chronobiology Disorders; chronodisruption; obesity
Abstract Disruption of the cyrcadian system is a relatively new concept incriminated as being responsible for obesity, cardiovascular involvement, cognitive impairment, premature aging and last but not least, cancer. Because obesity is undoubtedly assimilated today to the medical conditions related to the disruption of the normal chronobiology, this paper presents the pivotal role of chronodisruption in the neuroendocrine control of appetite among these patients.
Address University of Medicine and Pharmacy "Iuliu Hatieganu” Cluj – Napoca, Romania; recornean(as)yahoo.com
Corporate Author Thesis
Publisher Romanian Society of Pediatric Surgery Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2065-4855 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1349
Permanent link to this record
 

 
Author Dauchy, R.T.; Xiang, S.; Mao, L.; Brimer, S.; Wren, M.A.; Yuan, L.; Anbalagan, M.; Hauch, A.; Frasch, T.; Rowan, B.G.; Blask, D.E.; Hill, S.M.
Title Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer Type Journal Article
Year 2014 Publication Cancer Research Abbreviated Journal Cancer Res
Volume 74 Issue 15 Pages 4099-4110
Keywords *Cancer; breast cancer; melatonin; endocrinology; tamoxifen; *Circadian Rhythm; circadian disruption; human health; epidemiology
Abstract Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERalpha(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. Cancer Res; 74(15); 4099-110. (c)2014 AACR.
Address Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:25062775; PMCID:PMC4119539 Approved no
Call Number IDA @ john @ Serial 355
Permanent link to this record