|   | 
Details
   web
Records
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L.
Title Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
Year (down) 2019 Publication Environmental Research Abbreviated Journal Environ Res
Volume 180 Issue Pages 108823
Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage
Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.
Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes PMID:31627155 Approved no
Call Number GFZ @ kyba @ Serial 2702
Permanent link to this record
 

 
Author Erren, T.C.; Morfeld, P.; Foster, R.G.; Reiter, R.J.; Gross, J.V.; Westermann, I.K.
Title Sleep and cancer: Synthesis of experimental data and meta-analyses of cancer incidence among some 1 500 000 study individuals in 13 countries Type Journal Article
Year (down) 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 33 Issue 4 Pages 325-350
Keywords Human Health; Cancer; chronodisruption; meta-analyses; napping; sleep and circadian rhythm disruption (SCRD); sleep duration; sleep quality; sleep timing; Circadian Rhythm; sleep; Oncogenesis
Abstract Sleep and its impact on physiology and pathophysiology are researched at an accelerating pace and from many different angles. Experiments provide evidence for chronobiologically plausible links between chronodisruption and sleep and circadian rhythm disruption (SCRD), on the one hand, and the development of cancer, on the other. Epidemiological evidence from cancer incidence among some 1 500 000 study individuals in 13 countries regarding associations with sleep duration, napping or “poor sleep” is variable and inconclusive. Combined adjusted relative risks (meta-RRs) for female breast cancer, based on heterogeneous data, were 1.01 (95% CI: 0.97-1.06). Meta-RRs for cancers of the colorectum and of the lung in women and men and for prostate cancer were 1.08 (95% CI: 1.03-1.13), 1.11 (95% CI: 1.00-1.22) and 1.05 (95% CI: 0.83-1.33), respectively. The significantly increased meta-RRs for colorectal cancer, based on homogeneous data, warrant targeted study. However, the paramount epidemiological problem inhibiting valid conclusions about the associations between sleep and cancer is the probable misclassification of the exposures to facets of sleep over time. Regarding the inevitable conclusion that more research is needed to answer How are sleep and cancer linked in humans? we offer eight sets of recommendations for future studies which must take note of the complexity of multidirectional relationships.
Address a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University of Cologne , Cologne , Germany
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:27003385 Approved no
Call Number IDA @ john @ Serial 1407
Permanent link to this record
 

 
Author Van Geffen, K.G.; Groot, A.T.; Van Grunsven, R.H.A.; Donners, M.; Berendse, F.; Veenendaal, E.M.
Title Artificial night lighting disrupts sex pheromone in a noctuid moth: Moth sex pheromone in illuminated nights Type Journal Article
Year (down) 2015 Publication Ecological Entomology Abbreviated Journal Ecol Entomol
Volume 40 Issue 4 Pages 401-408
Keywords Animals; moths; Disruption; light pollution; Mamestra brassicae; sex pheromone composition; sexual communication
Abstract 1. One major, yet poorly studied, change in the environment is the increase in nocturnal light pollution. Although this strongly alters the habitat of nocturnal species, the ecological consequences are poorly known. Moths are well known to be attracted to artificial light sources, but artificial light may affect them in other ways as well.

2. In this study, female Mamestra brassicae moths were subjected to various types of low-intensity artificial night lighting with contrasting spectral compositions (green-rich, red-rich, warm white) or to a dark control treatment and the effects on their sex pheromone production and composition were tested.

3. Artificial night lighting reduced sex pheromone production and altered the chemical composition of the pheromone blend, irrespective of spectral composition. Specifically, amounts of the main pheromone component Z11-16:Ac were reduced, while the deterring compounds Z9-14:Ac, Z9-16:Ac, and Z11-16:OH were increased relative to Z11-16:Ac when females were kept under artificial light. These changes may reduce the effectiveness of the sex pheromones, becoming less attractive for males.

4. These results show for the first time that artificial light at night affects processes that are involved in moth reproduction. The potential for mitigation through manipulation of the spectral composition of artificial light appears limited.
Address Astrid T. Groot, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands. E-mail: a.t.groot(at)uva.nl
Corporate Author Thesis
Publisher John Wiley & Sons, Inc. Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0307-6946 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1153
Permanent link to this record
 

 
Author Walmsley, L.; Hanna, L.; Mouland, J.; Martial, F.; West, A.; Smedley, A.R.; Bechtold, D.A.; Webb, A.R.; Lucas, R.J.; Brown, T.M.
Title Colour As a Signal for Entraining the Mammalian Circadian Clock Type Journal Article
Year (down) 2015 Publication PLoS Biology Abbreviated Journal PLoS Biol
Volume 13 Issue 4 Pages e1002127
Keywords Animals; biology; color; circadian disruption; animal models; mouse models; Suprachiasmatic Nucleus; Photoperiod; twilight
Abstract Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.
Address Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
Corporate Author Thesis
Publisher PLOS Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1544-9173 ISBN Medium
Area Expedition Conference
Notes PMID:25884537 Approved no
Call Number IDA @ john @ Serial 1152
Permanent link to this record
 

 
Author Chang, A.-M.; Aeschbacha, D.; Duffy, J.F.; Czeislera, C.A.
Title Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness Type Journal Article
Year (down) 2015 Publication Proceedings of the National Academy of Sciences of the United States of America Academy of Sciences Abbreviated Journal PNAS
Volume 112 Issue 4 Pages 1232–1237
Keywords Human Health; sleep; chronobiology; phase-shifting; digital media; electronics; melatonin; Circadian disruption
Abstract In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength–enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.
Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1079
Permanent link to this record