toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Allik, T.; Ramboyong, L.; Roberts, M.; Walters, M.; Soyka, T.; Dixon, R.; Cho, J. url  doi
openurl 
  Title Enhanced oil spill detection sensors in low-light environments Type Conference Article
  Year 2016 Publication Proc. SPIE 9827, Ocean Sensing and Monitoring VIII, 98270B (May 17, 2016) Abbreviated Journal Proc. SPIE 9827  
  Volume Issue (up) Pages  
  Keywords Instrumentation; Sensors; Cameras; Long wavelength infrared; Short wave infrared radiation; Spectroscopy; Calibration; Remote sensing; Water; Near infrared; Night vision  
  Abstract Although advances have been made in oil spill remote detection, many electro-optic sensors do not provide real-time images, do not work well under degraded visual environments, nor provide a measure of extreme oil thickness in marine environments. A joint program now exists between BSEE and NVESD that addresses these capability gaps in remote sensing of oil spills. Laboratory experiments, calibration techniques, and field tests were performed at Fort Belvoir, Virginia; Santa Barbara, California; and the Ohmsett Test Facility in Leonardo, New Jersey. Weathered crude oils were studied spectroscopically and characterized with LWIR, and low-light-level visible/NIR, and SWIR cameras. We designed and fabricated an oil emulsion thickness calibration cell for spectroscopic analysis and ground truth, field measurements. Digital night vision cameras provided real-time, wide-dynamic-range imagery, and were able to detect and recognize oil from full sun to partial moon light. The LWIR camera provided quantitative oil analysis (identification) for >1 mm thick crude oils both day and night. Two filtered, co-registered, SWIR cameras were used to determine whether oil thickness could be measured in real time. Spectroscopic results revealed that oil emulsions vary with location and weathered state and some oils (e.g., ANS and Santa Barbara seeps) do not show the spectral rich features from archived Deep Water Horizon hyperspectral data. Multi-sensor imagery collected during the 2015 USCG Airborne Oil Spill Remote Sensing and Reporting Exercise and the design of a compact, multiband imager are discussed.  
  Address Active EO Inc.  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1475  
Permanent link to this record
 

 
Author Maggio, R.; Vaglini, F.; Rossi, M.; Fasciani, I.; Pietrantoni, I.; Marampon, F.; Corsini, G.U.; Scarselli, M.; Millan, M.J. url  doi
openurl 
  Title Parkinson's disease and light: The bright and the Dark sides Type Journal Article
  Year 2019 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull  
  Volume 150 Issue (up) Pages 290-296  
  Keywords Humah Health; Light pollution; Near-infrared light; Parkinson's disease  
  Abstract Light exerts a major influence on human behaviour and health, mainly owing to the importance of sight in our lives, but also due to its entrainment of daily rhythms via the suprachiasmatic nucleus, the master pacemaker. Light may also be a useful clinical medium, as in lumino-therapy for the improvement of depressed mood. Further, as discussed herein, local application of near infrared light to the substantia nigra exerts neuroprotective properties in models of Parkinson's disease. However, light also has a darker side. In general, as regards the growing problem to human health – and the natural world – of excess exposure to artificial light: both urban glow and ubiquitous screens. Moreover, over-exposure to light, in particular fluorescent light, disrupts circadian rhythms and sleep, and may damage dopaminergic neurons. Is it, then, a neglected risk factor for Parkinson's disease? The present article discusses epidemiological and experimental evidence supporting beneficial and potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might influence neuronal tissue.  
  Address Centre for Innovation in Neuropsychiatry, Institut de Recherches Servier, 125, Chemin de Ronde, 78290, Croissy sur Seine, France. Electronic address: mark.millan@servier.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-9230 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31226407 Approved no  
  Call Number GFZ @ kyba @ Serial 2586  
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S. url  doi
openurl 
  Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
  Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue (up) 12 Pages 6717-6766  
  Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight  
  Abstract Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 468  
Permanent link to this record
 

 
Author Buchanan, B.W. url  doi
openurl 
  Title Effects of enhanced lighting on the behaviour of nocturnal frogs Type Journal Article
  Year 1993 Publication Animal Behaviour Abbreviated Journal Animal Behaviour  
  Volume 45 Issue (up) 5 Pages 893-899  
  Keywords animals; amphibians; frogs; grey treefrog; Hyla chrysoscelis; foraging; infrared  
  Abstract Biologists studying anuran amphibians usually assume that artificial, visible light does not affect the behaviour of nocturnal frogs. This assumption was tested in a laboratory experiment. The foraging behaviour of grey treefrogs, Hyla chrysoscelis, was compared under four lighting conditions: ambient light (equivalent to bright moonlight, 0·003 lx), red-filtered light (4·1 lx), low-intensity 'white' light (3·8 lx), and high-intensity 'white' light (12·0 lx). The treatments were chosen to correspond to standard methods of field observation of frog behaviour. The foraging behaviour of frogs in the four treatments was observed using infra-red light that was invisible to the frogs. The ability of the frogs to detect, and subsequently consume prey was significantly reduced under all of the enhanced light treatments relative to the ambient light treatment. Thus, the use of artificial light, within the visible spectrum of the frogs' eyes, can influence the outcome of nocturnal behavioural observations. These results lead to the recommendation that anuran biologists use infra-red or light amplification devices when changes in frogs' visual capabilities may influence the conclusions drawn from a study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-3472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 72  
Permanent link to this record
 

 
Author Li, X.; Xu, H.; Chen, X.; Li, C. url  doi
openurl 
  Title Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China Type Journal Article
  Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 5 Issue (up) 6 Pages 3057-3081  
  Keywords nighttime light; gross regional product; Visible Infrared Imaging Radiometer Suite; linear regression  
  Abstract Historically, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) was the unique satellite sensor used to collect the nighttime light, which is an efficient means to map the global economic activities. Since it was launched in October 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite has become a new satellite used to monitor nighttime light. This study performed the first evaluation on the NPP-VIIRS nighttime light imagery in modeling economy, analyzing 31 provincial regions and 393 county regions in China. For each region, the total nighttime light (TNL) and gross regional product (GRP) around the year of 2010 were derived, and a linear regression model was applied on the data. Through the regression, the TNL from NPP-VIIRS were found to exhibit R2 values of 0.8699 and 0.8544 with the provincial GRP and county GRP, respectively, which are significantly stronger than the relationship between the TNL from DMSP-OLS (F16 and F18 satellites) and GRP. Using the regression models, the GRP was predicted from the TNL for each region, and we found that the NPP-VIIRS data is more predictable for the GRP than those of the DMSP-OLS data. This study demonstrates that the recently released NPP-VIIRS nighttime light imagery has a stronger capacity in modeling regional economy than those of the DMSP-OLS data. These findings provide a foundation to model the global and regional economy with the recently availability of the NPP-VIIRS data, especially in the regions where economic census data is difficult to access.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 201  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: