toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kantermann, T.; Roenneberg, T. url  doi
openurl 
  Title Is light-at-night a health risk factor or a health risk predictor? Type Journal Article
  Year 2009 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 26 Issue 6 Pages 1069-1074  
  Keywords *Chronobiology Disorders; Circadian Rhythm; Environmental Exposure; Humans; *Light; Neoplasms; Risk Factors  
  Abstract In 2007, the IARC (WHO) has classified “shift-work that involves circadian disruption” as potentially carcinogenic. Ample evidence leaves no doubt that shift-work is detrimental for health, but the mechanisms behind this effect are not well understood. The hormone melatonin is often considered to be a causal link between night shift and tumor development. The underlying “light-at-night” (LAN) hypothesis is based on the following chain of arguments: melatonin is a hormone produced under the control of the circadian clock at night, and its synthesis can be suppressed by light; as an indolamine, it potentially acts as a scavenger of oxygen radicals, which in turn can damage DNA, which in turn can cause cancer. Although there is no experimental evidence that LAN is at the basis of increased cancer rates in shiftworkers, the scenario “light at night can cause cancer” influences research, medicine, the lighting industry and (via the media) also the general public, well beyond shiftwork. It is even suggested that baby-lights, TVs, computers, streetlights, moonlight, emergency lights, or any so-called “light pollution” by urban developments cause cancer via the mechanisms proposed by the LAN hypothesis. Our commentary addresses the growing concern surrounding light pollution. We revisit the arguments of the LAN theory and put them into perspective regarding circadian physiology, physical likelihood (e.g., what intensities reach the retina), and potential risks, specifically in non-shiftworkers.  
  Address Institute for Medical Psychology, University of Munich LMU, Munich, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19731106 Approved no  
  Call Number IDA @ john @ Serial 134  
Permanent link to this record
 

 
Author Lowden, A.; Akerstedt, T. url  doi
openurl 
  Title Assessment of a new dynamic light regimen in a nuclear power control room without windows on quickly rotating shiftworkers--effects on health, wakefulness, and circadian alignment: a pilot study Type Journal Article
  Year 2012 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 5 Pages 641-649  
  Keywords Adaptation, Physiological; Adult; *Circadian Rhythm; Darkness/adverse effects; *Environment, Controlled; Female; Humans; *Light; Male; Melatonin/metabolism; Middle Aged; Photic Stimulation; Pilot Projects; Saliva/chemistry; Sleep/*physiology; *Wakefulness; *Work Schedule Tolerance  
  Abstract The aim of the study was to test whether a new dynamic light regime would improve alertness, sleep, and adaptation to rotating shiftwork. The illumination level in a control room without windows at a nuclear power station was ~200 lux (straight-forward horizontal gaze) using a weak yellow light of 200 lux, 3000 K (Philips Master TLD 36 W 830). New lighting equipment was installed in one area of the control room above the positions of the reactor operators. The new lights were shielded from the control group by a distance of >6 m, and the other operators worked at desks turned away from the new light. The new lights were designed to give three different light exposures: (i) white/blue strong light of 745 lux, 6000 K; (ii) weak yellow light of 650 lux, 4000 K; and (iii) yellow moderate light of 700 lux, 4000 K. In a crossover design, the normal and new light exposures were given during a sequence of three night shifts, two free days, two morning shifts, and one afternoon shift (NNN + MMA), with 7 wks between sessions. The operators consisted of two groups; seven reactor operators from seven work teams were at one time exposed to the new equipment and 16 other operators were used as controls. The study was conducted during winter with reduced opportunities of daylight exposure during work, after night work, or before morning work. Operators wore actigraphs, filled in a sleep/wake diary, including ratings of sleepiness on the Karolinska Sleepiness Scale (KSS) every 2 h, and provided saliva samples for analysis of melatonin at work (every 2nd h during one night shift and first 3 h during one morning shift). Results from the wake/sleep diary showed the new light treatment increased alertness during the 2nd night shift (interaction group x light x time, p < .01). Time of waking was delayed in the light condition after the 3rd night shift (group x light, p < .05), but the amount of wake time during the sleep span increased after the 2nd night shift (p < .05), also showing a tendency to affect sleep efficiency (p < .10). Effects on circadian phase were difficult to establish given the small sample size and infrequent sampling of saliva melatonin. Nonetheless, it seems that appropriate dynamic light in rooms without windows during the dark Nordic season may promote alertness, sleep, and better adaptation to quickly rotating shiftwork.  
  Address Stress Research Institute, Stockholm University, Stockholm, Sweden. arne.lowden@stress.su.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22621361 Approved no  
  Call Number IDA @ john @ Serial 148  
Permanent link to this record
 

 
Author Martinez-Nicolas, A.; Ortiz-Tudela, E.; Madrid, J.A.; Rol, M.A. url  doi
openurl 
  Title Crosstalk between environmental light and internal time in humans Type Journal Article
  Year 2011 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 28 Issue 7 Pages 617-629  
  Keywords Adolescent; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cues; *Environment; Female; Humans; *Light; Male; Sleep; Spain; Temperature; *Time; Young Adult  
  Abstract Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38 degrees 01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.  
  Address Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21793693 Approved no  
  Call Number IDA @ john @ Serial 302  
Permanent link to this record
 

 
Author Kempenaers, B.; Borgstrom, P.; Loes, P.; Schlicht, E.; Valcu, M. url  doi
openurl 
  Title Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds Type Journal Article
  Year 2010 Publication (up) Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 20 Issue 19 Pages 1735-1739  
  Keywords Animals; Environmental Pollution; Female; Light; *Lighting; Male; *Reproduction; Sexual Behavior, Animal/*physiology; Songbirds/*physiology; Time Factors; *Vocalization, Animal  
  Abstract Associated with a continued global increase in urbanization, anthropogenic light pollution is an important problem. However, our understanding of the ecological consequences of light pollution is limited. We investigated effects of artificial night lighting on dawn song in five common forest-breeding songbirds. In four species, males near street lights started singing significantly earlier at dawn than males elsewhere in the forest, and this effect was stronger in naturally earlier-singing species. We compared reproductive behavior of blue tits breeding in edge territories with and without street lights to that of blue tits breeding in central territories over a 7 year period. Under the influence of street lights, females started egg laying on average 1.5 days earlier. Males occupying edge territories with street lights were twice as successful in obtaining extra-pair mates than their close neighbors or than males occupying central forest territories. Artificial night lighting affected both age classes but had a stronger effect on yearling males. Our findings indicate that light pollution has substantial effects on the timing of reproductive behavior and on individual mating patterns. It may have important evolutionary consequences by changing the information embedded in previously reliable quality-indicator traits.  
  Address Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany. b.kempenaers@orn.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20850324 Approved no  
  Call Number IDA @ john @ Serial 51  
Permanent link to this record
 

 
Author Leung, J.M.; Martinez, M.E. url  doi
openurl 
  Title Circadian Rhythms in Environmental Health Sciences Type Journal Article
  Year 2020 Publication (up) Current Environmental Health Reports Abbreviated Journal Curr Environ Health Rep  
  Volume in press Issue Pages  
  Keywords Review; Human Health; Asthma; Biomarkers; Breast cancer; Circadian rhythms; DNA methylation; Environmental health  
  Abstract PURPOSE OF REVIEW: This review aims to explore how circadian rhythms influence disease susceptibility and potentially modify the effect of environmental exposures. We aimed to identify biomarkers commonly used in environmental health research that have also been the subject of chronobiology studies, in order to review circadian rhythms of relevance to environmental health and determine if time-of-day is an important factor to consider in environmental health studies. Moreover, we discuss opportunities for studying how environmental exposures may interact with circadian rhythms to structure disease pathology and etiology. RECENT FINDINGS: In recent years, the study of circadian rhythms in mammals has flourished. Animal models revealed that all body tissues have circadian rhythms. In humans, circadian rhythms were also shown to exist at multiple levels of organization: molecular, cellular, and physiological processes, including responding to oxidative stress, cell trafficking, and sex hormone production, respectively. Together, these rhythms are an essential component of human physiology and can shape an individual's susceptibility and response to disease. Circadian rhythms are relatively unexplored in environmental health research. However, circadian clocks control many physiological and behavioral processes that impact exposure pathways and disease systems. We believe this review will motivate new studies of (i) the impact of exposures on circadian rhythms, (ii) how circadian rhythms modify the effect of environmental exposures, and (iii) how time-of-day impacts our ability to observe the body's response to exposure.  
  Address Department of Environmental Health Sciences, Columbia University, 630 West 168th Street, Room 16-421C, New York, NY, USA. mem2352@cumc.columbia.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-5412 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32662059 Approved no  
  Call Number GFZ @ kyba @ Serial 3055  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: