toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jou, J.-H.; Hsieh, C.-Y.; Tseng, J.-R.; Peng, S.-H.; Jou, Y.-C.; Hong, J.H.; Shen, S.-M.; Tang, M.-C.; Chen, P.-C.; Lin, C.-H. url  doi
openurl 
  Title Candle Light-Style Organic Light-Emitting Diodes Type Journal Article
  Year 2013 Publication Advanced Functional Materials Abbreviated Journal Adv. Funct. Mater.  
  Volume 23 Issue 21 Pages 2750-2757  
  Keywords organic light emitting diodes; candle light; firelight; OLED; CRI; color rendition  
  Abstract In response to the call for a physiologically-friendly light at night that shows low color temperature, a candle light-style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light-style emission is driven by electricity in lieu of the energy-wasting and greenhouse gas emitting hydrocarbon-burning candles invented 5000 years ago. This candle light-style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616301X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 284  
Permanent link to this record
 

 
Author Sperber, A.N.; Elmore, A.C.; Crow, M.L.; Cawlfield, J.D. url  doi
openurl 
  Title Performance evaluation of energy efficient lighting associated with renewable energy applications Type Journal Article
  Year 2012 Publication Renewable Energy Abbreviated Journal Renewable Energy  
  Volume 44 Issue Pages 423-430  
  Keywords Renewable energy; Energy efficiency; Ultra capacitor; Light emitting diodes; Metal halide; LED; LED lighting  
  Abstract Energy efficiency is a primary consideration when designing off-grid renewable energy systems including portable micro-grids. This study focuses on characterizing the potential benefits associated with using energy efficient exterior area lighting commonly associated with remote installations. Light emitting diode (LED) luminaires are becoming more commercially available, and this study compares two LED products designed for exterior lighting to traditional metal halide lamps. The characterization focuses on the use of a diesel generator, battery bank, and a bank of ultra capacitors (UCAPs) to power the lights because these systems are also used to generate or store energy at renewable energy-powered micro-grids. This field-based study quantifies the illuminance provided by each lighting system, diesel consumption rates associated with powering the lights and/or charging the batteries and UCAPs, and the time of operation for each lighting system when powered by a single discharge cycle of the batteries and UCAPs. The energy efficiency benefit of the LED luminaires is offset by their lower illuminance. However, a comparison of lighting standards for specific purposes such as security lighting indicates that LEDs may be appropriate for applications where a metal halide system would provide significantly more illumination than required at a much higher energy cost. For those purposes where higher levels of illuminance are required, the data presented in the paper may be useful in designing a renewable energy-powered micro-grid that uses multiple LED fixtures to illuminate an exterior area that is currently illuminated by a single metal halide light stand.  
  Address Geological Engineering, Missouri University of Science and Technology, 129 McNutt Hall, 1400 N. Bishop Avenue Rolla, MO 65409, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-1481 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 335  
Permanent link to this record
 

 
Author Witkowski, P., & Korzeniewska, E. url  doi
openurl 
  Title Comparative analysis of HPS and LED luminaries in terms of effectiveness of greenhouse plant lighting and light emission Type Journal Article
  Year 2019 Publication IEEE Xplore Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Light emitting diodes; LED; Lighting; Sodium; Electromagnetics; Light sources; Color; Production  
  Abstract The article focuses on the analysis of the parameters of light sources, spectrum characteristics of HPS and LED lighting to achieve the best results in greenhouse cultivation with the least energy consumption, and the escape of light into space. The authors have compared both sodium HPS and LED luminaries in the aspect of colour light efficiency and their influence on the plant vegetation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2646  
Permanent link to this record
 

 
Author Longcore, T.; Aldern, H.L.; Eggers, J.F.; Flores, S.; Franco, L.; Hirshfield-Yamanishi, E.; Petrinec, L.N.; Yan, W.A.; Barroso, A.M. url  doi
openurl 
  Title Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140125  
  Keywords Lighting; Animals; insects; light emitting diodes; LEDs; arthropods; Phototaxis; indoor lighting; vector-borne disease  
  Abstract Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods.  
  Address Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA; longcore@usc.edu  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1122  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: