toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anisimov, V.N.; Vinogradova, I.A.; Panchenko, A.V.; Popovich, I.G.; Zabezhinskii, M.A. url  openurl
  Title Light-at-Night-Induced Circadian Disruption, Cancer and Aging Type Journal Article
  Year 2012 Publication Current Aging Science Abbreviated Journal  
  Volume 5 Issue 3 Pages 170-177  
  Keywords Animals; Light-at-night; aging; cancer; cardiovascular diseases; circadian; circadian rhythm; diabetes; disruption; melatonin; shift-work  
  Abstract Light-at-night has become an increasing and essential part of the modern lifestyle and leads to a number of health problems, including excessive body mass index, cardiovascular diseases, diabetes, and cancer. The International Agency for Research on Cancer (IARC) Working Group concluded that “shift-work that involves circadian disruption is probably carcinogenic to humans” (Group 2A) [1]. According to the circadian disruption hypothesis, light-at-night might disrupt the endogenous circadian rhythm and specifically suppress nocturnal production of the pineal hormone melatonin and its secretion into the blood. We evaluated the effect of various light/dark regimens on the survival, life span, and spontaneous and chemical carcinogenesis in rodents. Exposure to constant illumination was followed by accelerated aging and enhanced spontaneous tumorigenesis in female CBA and transgenic HER-2/neu mice. In male and female rats maintained at various light/dark regimens (standard 12:12 light/dark [LD], the natural light [NL] of northwestern Russia, constant light [LL], and constant darkness [DD]) from the age of 25 days until natural death, it was found that exposure to NL and LL regimens accelerated age-related switch-off of the estrous function (in females), induced development of metabolic syndrome and spontaneous tumorigenesis, and shortened life span both in male and females rats compared to the standard LD regimen. Melatonin given in nocturnal drinking water prevented the adverse effect of the constant illumination (LL) and natural light (NL) regimens on the homeostasis, life span, and tumor development both in mice and rats. The exposure to the LL regimen accelerated colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in rats, whereas the treatment with melatonin alleviated the effects of LL. The maintenance of rats at the DD regimen inhibited DMH-induced carcinogenesis. The LL regimen accelerated, whereas the DD regimen inhibited both mammary carcinogenesis induced by N-nitrosomethylurea and transplacental carcinogenesis induced by N-nitrosoethylurea in rats. Treatment with melatonin prevented premature aging and tumorigenesis in rodents. The data found in the literature and our observations suggest that the use of melatonin would be effective for cancer prevention in humans at risk as a result of light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 377  
Permanent link to this record
 

 
Author Bukalev, A.V.; Vinogradova, I.A.; Zabezhinskii, M.A.; Semenchenko, A.V.; Anisimov, V.N. url  doi
openurl 
  Title Light pollution increases morbidity and mortality rate from different causes in female rats Type Journal Article
  Year 2013 Publication Advances in Gerontology Abbreviated Journal Adv Gerontol  
  Volume 3 Issue 3 Pages 180-188  
  Keywords light-at-night; spontaneous tumors; nontumor pathology epiphysis; rats; animals; mammals  
  Abstract The influence of different light regimes (constant light, LL; constant darkness, DD; standard light regime, LD, 12 hours light/12 hours darkness; and natural lighting of the northwest of Russia (NL) on non-tumor pathology revealed in the post-mortem examination of female rats has been studied. It was found that keeping 25-days-old animals under LL and NL conditions led to an increase in the number of infectious diseases and the substantially faster development of spontaneous tumors (2.9 and 3.3 diseases per one rat, respectively), variety of nontumor pathology found in dead rats, compared with the animals in standard (standard light) regime (1.72 diseases per one rat). Light deprivation (DD) led to a substantial reduction in the development of new growth, as well as nontumor and infectious diseases (1.06 diseases per one rat), compared to the same parameters in a standard light regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-0570 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 89  
Permanent link to this record
 

 
Author Leung, S.T.; McKinney, R.A.; Watt, A.J. url  doi
openurl 
  Title The impact of light during the night Type Journal Article
  Year 2019 Publication eLife Abbreviated Journal eLife  
  Volume 8 Issue Pages in press  
  Keywords Commentary; *brain development; *chicken; *light-at-night; *neuroscience; *pineal gland; *steroid  
  Abstract Exposing chicks to one hour of light during the night disrupts the release of a hormone that is needed by cells in the developing brain to survive.  
  Address Department of Biology, McGill University, Montreal, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-084X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31714876; PMCID:PMC6850772 Approved no  
  Call Number GFZ @ kyba @ Serial 2795  
Permanent link to this record
 

 
Author Rybnikova, N.A.; Portnov, B.A. url  doi
openurl 
  Title Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe Type Journal Article
  Year 2015 Publication Letters in Spatial and Resource Sciences Abbreviated Journal Lett. Spatial & Resource Sci.  
  Volume 8 Issue 3 Pages 307–334  
  Keywords Remote Sensing; Economic activities; Clusters; Satellite photometry; Light-at-night; Europe; Nomenclature of Territorial Units for Statistics; C13; C38; O52; Economics  
  Abstract Enterprises organized in clusters are often efficient in stimulating urban development, productivity and profit outflows. Identifying the clusters of economic activities thus becomes an important step in devising regional development policies, aimed at the formation of clusters of economic activities in geographic areas in which this objective is desirable. However, a major problem with the identification of such clusters stems from limited reporting by individual countries and administrative entities on the regional distribution of specific economic activities, especially for small regional subdivisions. In this study, we test a possibility that missing data on geographic concentrations of economic activities in the European NUTS3 regions can be reconstructed using light-at-night satellite measurements, and that such reconstructed data can then be used for cluster identification. The matter is that light-at-night, captured by satellite sensors, is characterized by different intensity, depending on its source—production facilities, services, etc. As a result, light-at-night can become a marker of different types of economic activities, a hypothesis that the present study confirms. In particular, as the present analysis indicates, average light-at-night intensities emitted from NUTS3 regions help to explain up to 94 % variance in the areal density of several types of economic activities, performing especially well for professional, scientific and technical services (R^2=0.742−0.939), public administration (R^2=0.642−0.934), as well as for arts, entertainment and recreation (R^2=0.718−0.934). As a result, clusters of these economic activities can be identified using light-at-night data, thus helping to supplement missing information and assist regional analysis.  
  Address Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, 31805, Mt. Carmel, Israel; Portnov@research.haifa.ac.il  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1148  
Permanent link to this record
 

 
Author Verma, A.K.; Singh, S.; Rizvi, S.I. url  doi
openurl 
  Title Age-dependent altered redox homeostasis in the chronodisrupted rat model and moderation by melatonin administration Type Journal Article
  Year 2020 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume in press Issue Pages  
  Keywords Animals; Aging; artificial light-at-night; circadian disruption; melatonin; oxidative stress  
  Abstract Circadian disruption or chronodisruption (CD) occurs when day-night cycles and other internal rhythms are not adjusted to environmental light-dark regimens and are unable to synchronize among each other. Artificial light-induced oxidative stress is a major concern as the circadian physiology of the cell is chronically altered due to suppression of the time-keeping hormone, melatonin. The relationship between age-related impaired redox status and disrupted circadian rhythms is still not fully understood. The present study evaluated the effect of artificial light at night (ALAN) with respect to aging and role of melatonin supplementation. This study was conducted on young (3 months) and old (24 months) male Wistar rats subdivided into four groups control (C), melatonin treated (MLT), artificial light at night (ALAN), and ALAN+MLT group. Pronounced changes were observed in the old compared to the young rats. Reactive oxygen species (ROS), malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl (PCO), and sialic acid (SA) were significantly (p </= 0.05) increased, while ferric reducing ability of plasma (FRAP) and reduced glutathione (GSH) were significantly (p </= 0.05) suppressed in light-exposed young and old animals compared to their age-matched controls. Advanced oxidation protein products (AOPP) increased non-significantly in young rats of the ALAN group; however, significant (p </= 0.05) changes were observed in the old rats of the ALAN group compared to their respective controls. Advanced glycation end products (AGEs) increased and acetylcholinesterase (AChE) activity decreased, significantly (p </= 0.05) in young animals of the ALAN group, while nonsignificant changes of both parameters were recorded in the old animals of the ALAN groups compared with their age-matched controls. Melatonin supplementation resulted in maintenance of the normal redox homeostasis in both young and old animal groups. Our study suggests that aged rats are more susceptible to altered photoperiod as their circadian redox homeostasis is under stress subsequent to ALAN. Melatonin supplementation could be a promising means of alleviating age-related circadian disturbances, especially in light-polluted areas.  
  Address Department of Biochemistry, University of Allahabad , Allahabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32731777 Approved no  
  Call Number GFZ @ kyba @ Serial 3067  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: