|   | 
Details
   web
Records
Author Benedetto, M.M.; Guido, M.E.; Contin, M.A.
Title Non-Visual Photopigments Effects of Constant Light-Emitting Diode Light Exposure on the Inner Retina of Wistar Rats Type Journal Article
Year 2017 Publication Frontiers in Neurology Abbreviated Journal Front Neurol
Volume 8 Issue Pages 417
Keywords changes in retinal structure; light-emitting diode light; non-visual opsin localization; retinal degeneration models; retinal light damage
Abstract The retina is part of the central nervous system specially adapted to capture light photons and transmit this information to the brain through photosensitive retinal cells involved in visual and non-visual activities. However, excessive light exposure may accelerate genetic retinal diseases or induce photoreceptor cell (PRC) death, finally leading to retinal degeneration (RD). Light pollution (LP) caused by the characteristic use of artificial light in modern day life may accelerate degenerative diseases or promote RD and circadian desynchrony. We have developed a working model to study RD mechanisms in a low light environment using light-emitting diode (LED) sources, at constant or long exposure times under LP conditions. The mechanism of PRC death is still not fully understood. Our main goal is to study the biochemical mechanisms of RD. We have previously demonstrated that constant light (LL) exposure to white LED produces a significant reduction in the outer nuclear layer (ONL) by classical PRC death after 7 days of LL exposure. The PRCs showed TUNEL-positive labeling and a caspase-3-independent mechanism of cell death. Here, we investigate whether constant LED exposure affects the inner-retinal organization and structure, cell survival and the expression of photopigments; in particular we look into whether constant LED exposure causes the death of retinal ganglion cells (RGCs), of intrinsically photosensitive RGCs (ipRGCs), or of other inner-retinal cells. Wistar rats exposed to 200 lx of LED for 2 to 8 days (LL 2 and LL 8) were processed for histological and protein. The results show no differences in the number of nucleus or TUNEL positive RGCs nor inner structural damage in any of LL groups studied, indicating that LL exposure affects ONL but does not produce RGC death. However, the photopigments melanopsin (OPN4) and neuropsin (OPN5) expressed in the inner retina were seen to modify their localization and expression during LL exposure. Our findings suggest that constant light during several days produces retinal remodeling and ONL cell death as well as significant changes in opsin expression in the inner nuclear layer.
Address Centro de Investigaciones en Quimica Biologica de Cordoba (CIQUIBIC), CONICET, Universidad Nacional de Cordoba, Cordoba, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2295 ISBN Medium
Area Expedition Conference
Notes PMID:28871236; PMCID:PMC5566984 Approved no
Call Number LoNNe @ kyba @ Serial 1711
Permanent link to this record
 

 
Author Davies, T.W.; Coleman, M.; Griffith, K.M.; Jenkins, S.R.
Title Night-time lighting alters the composition of marine epifaunal communities Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biology Letters
Volume 11 Issue 4 Pages 20150080-20150080
Keywords Ecology; artificial light pollution; marine ecosystems; epifaunal communities; larval recruitment; anthropogenic disturbance; light-emitting diodes; LED; biodiversity; artificial light at night; biology
Abstract Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities.
Address Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, UK
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-9561 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1162
Permanent link to this record
 

 
Author Dzakovich, M.; Gómez, C.; Mitchell, C.
Title Tomatoes Grown with Light-emitting Diodes or High-pressure Sodium Supplemental Lights have Similar Fruit-quality Attributes Type Journal Article
Year 2015 Publication HortScience Abbreviated Journal HortScience
Volume 50 Issue 10 Pages 1498-1502
Keywords Plants; greenhouse tomato production; HPS; LED; physicochemical testing; sensory panels; Solanum lycopersium; tomato; high-pressure sodium; agriculture; horticulture; light-emitting diode
Abstract Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.
Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010
Corporate Author Thesis
Publisher American Society for Horticultural Science Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-5345 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1301
Permanent link to this record
 

 
Author Fiorentin, P.; Boscaro, F.
Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
Year 2019 Publication Measurement Abbreviated Journal Measurement
Volume 138 Issue Pages 25-33
Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare
Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.
Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0263-2241 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2214
Permanent link to this record
 

 
Author Jin, H.; Jin, S.; Chen, L.; Cen, S.; Yuan, K.
Title Research on the Lighting Performance of LED Street Lights With Different Color Temperatures Type Journal Article
Year 2015 Publication IEEE Photonics Journal Abbreviated Journal IEEE Photonics J.
Volume 7 Issue 6 Pages 1-9
Keywords Lighting; LED; light-emitting diodes; PC-LED; dark adaption; color perception; fog; skyglow
Abstract While light-emitting diodes (LEDs) are a very efficient lighting option, whether phosphor-coated LEDs (PC-LEDs) are suitable for street lighting remains to be tested. Correlated color temperature (CCT), mesopic vision illuminance, dark adaption, color perception, fog penetration, and skyglow pollution are important factors that determine alight's suitability for street lighting. In this paper, we have closely examined the lighting performance of LED street lights with different color temperatures and found that low-color-temperature (around 3000 K) PC-LEDs are more suitable for street lighting.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1943-0655 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1307
Permanent link to this record