|   | 
Details
   web
Records
Author (down) Tagliabue, L.C.; Re Cecconi, F.; Moretti, N.; Rinaldi, S.; Bellagente, P.; Ciribini, A.L.C.
Title Security Assessment of Urban Areas through a GIS-Based Analysis of Lighting Data Generated by IoT Sensors Type Journal Article
Year 2020 Publication Applied Sciences Abbreviated Journal Applied Sciences
Volume 10 Issue 6 Pages 2174
Keywords Lighting
Abstract The current perspective about urban development expects 70% of energy consumption will be concentrated in the cities in 2050. In addition, a growing density of people in the urban context leads to the need for increased security and safety for citizens, which imply a better lighting infrastructure. Smart solutions are required to optimize the corresponding energy effort. In developing countries, the cities’ lighting is limited and the lighting world map is strongly significant about the urban density of the different areas. Nevertheless, in territories where the illumination level is particularly high, such as urban contexts, the conditions are not homogenous at the microscale level and the perceived security is affected by artificial urban lighting. As an example, 27.2% of the families living in the city of Milan, ombardy Region, Italy, consider critical the conditions of lighting in the city during the night, although the region has diffused infrastructure. The paper aims to provide a local illuminance geographic information system (GIS) mapping at the neighborhood level that can be extended to the urban context. Such an approach could unveil the need to increase lighting to enhance the perceived safety and security for the citizens and promote a higher quality of life in the smart city. Lighting mapping can be matched with car accident mapping of cities and could be extended to perceived security among pedestrians in urban roads and green areas, also related to degradation signs of the built environment. In addition, such an approach could open new scenarios to the adaptive street lighting control used to reduce the energy consumption in a smart city: the perceived security of an area could be used as an additional index to be considered during the modulation of the level of the luminosity of street lighting. An example of a measurement set-up is described and tested at the district level to define how to implement an extensive monitoring campaign based on an extended research schema.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-3417 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2873
Permanent link to this record
 

 
Author (down) Tabaka, P.; Rozga, P.
Title Influence of a Light Source Installed in a Luminaire of Opal Sphere Type on the Effect of Light Pollution Type Journal Article
Year 2020 Publication Energies Abbreviated Journal Energies
Volume 13 Issue 2 Pages 306
Keywords Lighting
Abstract The article presents the results of the studies concerning the influence of a light source installed in luminaire of opal sphere type on the light pollution effect of the night sky. It is known from literature reports that the effect of light pollution is influenced by the spectral distribution of light. Although the influence of the spectral distribution has been widely studied from different perspectives, there is still a need to study this phenomenon—for example, from the point of view of the spectral reflection properties of the ground, on which the lanterns are installed. Hence, the above-mentioned aspect was considered in the authors’ investigations. The luminaire considered has been equipped with 20 different light sources, including the latest generation of lamps (light-emitting diodes, LEDs) as well as the conventional ones. With respect to these light sources, the measurements of light distribution and spectral distribution of emitted radiation of the luminaire were performed. Having these measurement data, the simulations were carried out using the DIALux software, and the calculations were made using the specially prepared calculation tool. On the basis of the results obtained in this way this was stated that the type of light source installed in the luminaire has a significant effect on the sky glow. An important factor affecting light pollution is not only the value of the luminous flux emitted upward but also the spectral characteristics of the emitted radiation, the impact of which is most noticeable. The conclusions from the studies indicate the next steps in the analysis of the light pollution effect. These steps will be focused on extended analysis of LEDs as modern and developed light sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2815
Permanent link to this record
 

 
Author (down) Sweater-Hickcox, K.; Narendran, N.; Bullough, J.; Freyssinier, J.
Title Effect of different coloured luminous surrounds on LED discomfort glare perception Type Journal Article
Year 2013 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 45 Issue 4 Pages 464-475
Keywords perception; subjective; LED; LED lighting; spectral power distribution; SPD
Abstract Recently, there has been increased interest in energy-efficient lighting as energy resources become higher in demand. Anecdotal evidence suggests that certain populations believe light-emitting diodes (LED) produce more glare than traditional technologies. This may be due to a number of factors such as spectral power distribution (SPD), source luminance, or beam intensity distribution. A study was conducted to assess the effect of different SPDs on the perception of discomfort glare from an LED source. For the range of conditions evaluated, the presence of any luminous surround significantly reduced the perception of discomfort glare from the LED array. The blue luminous surround reduced discomfort glare perception significantly less than the white or the yellow luminous surrounds. The implications for solid-state lighting systems are discussed.
Address Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 338
Permanent link to this record
 

 
Author (down) Sullivan, J.M.; Flannagan, M.J.
Title Determining the potential safety benefit of improved lighting in three pedestrian crash scenarios Type Journal Article
Year 2007 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 39 Issue 3 Pages 638-647
Keywords Lighting; Accidents, Traffic/*prevention & control/statistics & numerical data; Automobile Driving/*psychology; Darkness/*adverse effects; *Environment Design; Humans; Lighting/*standards; Prevalence; Risk; *Safety; Time; *Visual Perception; *Walking
Abstract The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.
Address The University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109-2150, USA. jsully@umich.edu <jsully@umich.edu>
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:17126278 Approved no
Call Number LoNNe @ kagoburian @ Serial 648
Permanent link to this record
 

 
Author (down) Sullivan, J.M.; Flannagan, M.J.
Title The role of ambient light level in fatal crashes: inferences from daylight saving time transitions Type Journal Article
Year 2002 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 34 Issue 4 Pages 487-498
Keywords Public Safety; Lighting
Abstract The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2126
Permanent link to this record