|   | 
Details
   web
Records
Author (up) Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Finy, M.S.; Walton, J.C.; Weil, Z.M.; Workman, J.L.; Ross, J.; Nelson, R.J.
Title Influence of light at night on murine anxiety- and depressive-like responses Type Journal Article
Year 2009 Publication Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 205 Issue 2 Pages 349-354
Keywords Human Health; Animals; Anxiety/*physiopathology; Corticosterone/blood; Depression/*physiopathology; Dietary Sucrose/administration & dosage; Drinking Behavior/physiology; Light/*adverse effects; Lighting; Locomotion/physiology; Male; Maze Learning; Mice; Neuropsychological Tests; Organ Size; Photic Stimulation; *Photoperiod; Random Allocation; Swimming; Testis/pathology
Abstract Individuals are increasingly exposed to light at night. Exposure to constant light (LL) disrupts circadian rhythms of locomotor activity, body temperature, hormones, and the sleep-wake cycle in animals. Other behavioural responses to LL have been reported, but are inconsistent. The present experiment sought to determine whether LL produces changes in affective responses and whether behavioural changes are mediated by alterations in glucocorticoid concentrations. Relative to conspecifics maintained in a light/dark cycle (LD, 16:8 light/dark), male Swiss-Webster mice exposed to LL for three weeks increased depressive-like behavioural responses as evaluated by the forced swim test and sucrose anhedonia. Furthermore, providing a light escape tube reversed the effects of LL in the forced swim test. LL mice displayed reduced anxiety as evaluated by the open field and elevated-plus maze. Glucocorticoid concentrations were reduced in the LL group suggesting that the affective behavioural responses to LL are not the result of elevated corticosterone. Additionally, mice housed in LD with a clear tube displayed increased paired testes mass as compared to LL mice. Taken together, these data provide evidence that exposure to unnatural lighting can induce significant changes in affect, increasing depressive-like and decreasing anxiety-like responses.
Address Department of Psychology, The Ohio State University, Columbus, OH 43210, USA. Fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:19591880 Approved no
Call Number LoNNe @ kagoburian @ Serial 749
Permanent link to this record
 

 
Author (up) Fonken, L.K.; Lieberman, R.A.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice Type Journal Article
Year 2013 Publication Endocrinology Abbreviated Journal Endocrinology
Volume 154 Issue 10 Pages 3817-3825
Keywords Adipose Tissue, White/*immunology/metabolism/pathology; Animals; Antigens, CD11b/biosynthesis/genetics/metabolism; Appetite Regulation/*radiation effects; Arcuate Nucleus/*immunology/metabolism/pathology; Behavior, Animal/radiation effects; Circadian Rhythm; Cytokines/biosynthesis/genetics/metabolism; Diet, High-Fat/*adverse effects; Feeding Behavior/radiation effects; Gene Expression Regulation; Glucose Intolerance/etiology/immunology/metabolism/pathology; I-kappa B Kinase/biosynthesis/genetics/metabolism; Insulin Resistance; Lighting/*adverse effects; Male; Mice; Microglia/immunology/metabolism/pathology; Nerve Tissue Proteins/biosynthesis/genetics/metabolism; Obesity/*etiology/immunology/metabolism/pathology; Random Allocation; *Weight Gain
Abstract Elevated nighttime light exposure is associated with symptoms of metabolic syndrome. In industrialized societies, high-fat diet (HFD) and exposure to light at night (LAN) often cooccur and may contribute to the increasing obesity epidemic. Thus, we hypothesized that dim LAN (dLAN) would provoke additional and sustained body mass gain in mice on a HFD. Male mice were housed in either a standard light/dark cycle or dLAN and fed either chow or HFD. Exposure to dLAN and HFD increase weight gain, reduce glucose tolerance, and alter insulin secretion as compared with light/dark cycle and chow, respectively. The effects of dLAN and HFD appear additive, because mice exposed to dLAN that were fed HFD display the greatest increases in body mass. Exposure to both dLAN and HFD also change the timing of food intake and increase TNFalpha and MAC1 gene expression in white adipose tissue after 4 experimental weeks. Changes in MAC1 gene expression occur more rapidly due to HFD as compared with dLAN; after 5 days of experimental conditions, mice fed HFD already increase MAC1 gene expression in white adipose tissue. HFD also elevates microglia activation in the arcuate nucleus of the hypothalamus and hypothalamic TNFalpha, IL-6, and Ikbkb gene expression. Microglia activation is increased by dLAN, but only among chow-fed mice and dLAN does not affect inflammatory gene expression. These results suggest that dLAN exaggerates weight gain and peripheral inflammation associated with HFD.
Address Department of Neuroscience, Wexner Medical Center, The Ohio State University, 636 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7227 ISBN Medium
Area Expedition Conference
Notes PMID:23861373 Approved no
Call Number IDA @ john @ Serial 93
Permanent link to this record
 

 
Author (up) Foth, M., Caldwell, G.A.
Title More-than-human media architecture Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Architecture; Lighting; Planning
Abstract We consider some of the planetary conditions and global circumstances that both research and practice of media architecture are embedded within, such as climate change, pollution, resource consumption, and loss of biodiversity. While there has been a notable increase in emphasis on participation and engagement in design and use, with the aim to increase the involvement of diverse and often marginalised citizens, a human-centred approach to media architecture comes with its own set of problems. In this paper, we want to draw the attention of the media architecture community to the fallacy of human exceptionalism and anthropocentrism. We present a critical review of examples of media architecture projects and installations that question our understanding of urban space as separate from nature, and designed primarily for humans and just humans. Informed by studies in disciplines such as science and technology studies, critical geography, urban planning, and interaction design, we use insights derived from our review to discuss ways towards a more-than-human approach to media architecture. We conclude by proposing for discussion nascent design considerations for media architecture to go beyond the needs of just humans and to consider new ways to appreciate and cater for our broader ecological entanglements with plants, animals, and the environment at large.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Media Architecture Biennale, 13-16 November 2018, Beijing, China
Notes Approved no
Call Number GFZ @ kyba @ Serial 2081
Permanent link to this record
 

 
Author (up) Fotios, S., Price, T
Title Road lighting and accidents: Why lighting is not the only answer Type Journal Article
Year 2017 Publication Lighting Journal Abbreviated Journal
Volume 82 Issue 5 Pages 22-26
Keywords Lighting; Public Safety
Abstract Tony Price and Steve Fotios point out that while road lighting can be a significant counter measure to accidents, and that higher levels might help, the presence of road lighting does not guarantee all accidents will be avoided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1767
Permanent link to this record