|   | 
Details
   web
Records
Author (up) Farahat, A.; Florea, A.; Martinez Lastra, J.L.; Branas, C.
Title Energy Efficiency Considerations for LED-based Lighting of Multipurpose Outdoor Environments Type Journal Article
Year 2015 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingournal of Emerging and Selected Topics in Power Electronics Abbreviated Journal IEEE J. Emerging and Sel. Topics in Power Elec.
Volume PP Issue 99 Pages 1
Keywords Lighting; LED lighting; LED; optimization; lighting technology; lighting design; energy; energy efficiency
Abstract Nowadays street lighting accounts for 53% of outdoor lighting use and the market is continuously increasing. In the context of rising energy prices and growing environmental awareness, energy efficiency is becoming one of the most important criteria for street lighting systems design. LED-based lights have become the primary option for replacing conventional light bulbs, being digitally controllable, small, highly efficient, and cheap to manufacture. Advanced control strategies adapted to ambient conditions are needed to combine low energy consumption and high quality light ambience according to changing specifications. This paper describes an outdoor lighting solution aimed at energy efficient performance in the context of multipurpose outdoor environments, where control is crucial in achieving efficiency improvements. The work addresses efficiency at the component level, by optimizing the performance of LED drivers, and at system level, defining the control strategy and associated hardware infrastructure. The approach designed was tested in a real environment. The performance of the lighting installation was assessed using the web-based monitoring application, providing real-time consumption information and aggregated historical data.
Address University of Technology, Tampere, Finland.(Email: ahmed.amr.b@gmail.com)
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-6777 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1205
Permanent link to this record
 

 
Author (up) Farkas, T.D.; Kiràly, T.; Pardy, T.; Rang, T.; Rang, G.
Title Application of power line communication technology in street lighting control Type Journal Article
Year 2018 Publication International Journal of Design & Nature and Ecodynamics Abbreviated Journal Int. J. DNE
Volume 13 Issue 2 Pages 176-186
Keywords Lighting
Abstract Rapidly increasing usage of telecommunication systems causes new transmission technologies and networks to emerge. Not only the efficiency, reliability and accessibility of the network are important, but also the economic issues. One cost-effective solution could be power line communication (PLC) technology, which transmits data using the existing electricity infrastructure. The application of this communication technique is an attractive and innovative solution for the realization of smart cities and smart homes. With intelligent control networks, energy savings can be optimized and the operating as well as maintenance costs can be reduced. Since outdoor lighting systems are the major consumers of electricity, to create a modern, energy-efficient city, intelligent street lighting control is needed. This paper provides an overview of power line communication principles including the theoretical background of data communication, modulation techniques, channel access methods, protocols, disturbances and noises. Furthermore, in order to highlight the benefits of a PLC-based street lighting control system, a pilot project will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-7437 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2091
Permanent link to this record
 

 
Author (up) Femia, N.; Fortunato, M.; Vitelli, M.
Title Light-to-Light: PV-Fed LED Lighting Systems Type Journal Article
Year 2013 Publication IEEE Transactions on Power Electronics Abbreviated Journal IEEE Trans. Power Electron.
Volume 28 Issue 8 Pages 4063-4073
Keywords light-to-light systems; outdoor lighting; lighting technology; LED; LED lighting; photovoltaics; PV
Abstract This paper discusses the principle of operation, dynamic modeling, and control design for light-to-light (LtL) systems, whose aim is to directly convert the sun irradiation into artificial light. The system discussed in this paper is composed by a photovoltaic (PV) panel, an LED array, a dc-dc converter dedicated to the maximum power point tracking of the PV panel and a dc-dc converter dedicated to drive the LEDs array. A system controller is also included, whose goal is to ensure the matching between the maximum available PV power and the LED power by means of a low-frequency LEDs dimming. An experimental design example is discussed to illustrate the functionalities of the LtL system.
Address Dipt. di Ing. Elettron. e Ing. Inf., Univ. of Salerno, Salerno, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-8993 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 331
Permanent link to this record
 

 
Author (up) Figueiro, M.G.; Nagare, R.; Price, L.L.A.
Title Non-visual effects of light: How to use light to promote circadian entrainment and elicit alertness Type Journal Article
Year 2017 Publication Lighting Research & Technology Abbreviated Journal
Volume 50 Issue 1 Pages 38-62
Keywords Human Health; Lighting
Abstract In addition to stimulating the visual system, light incident on the retina stimulates other biological functions, also referred to as non-visual responses. Among the most notable biological functions are human circadian rhythms, which are bodily rhythms that, in constant darkness, oscillate with a period close to, but typically slightly longer than 24 hours. Twenty-four-hour light–dark patterns incident on the retina are the major synchroniser of circadian rhythms to the local time on Earth. Entrainment of circadian rhythms has been implicated in health and well-being. Light can also elicit an acute alerting effect on people, similar to a ‘cup of coffee.’ This review summarises the literature on how light affects entrainment and alertness and how it can be used to achieve these aims.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3133
Permanent link to this record
 

 
Author (up) Fiorentin, P.; Boscaro, F.
Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
Year 2019 Publication Measurement Abbreviated Journal Measurement
Volume 138 Issue Pages 25-33
Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare
Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.
Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0263-2241 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2214
Permanent link to this record