|   | 
Details
   web
Records
Author Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages e56563
Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record
 

 
Author Kelber, A.; Balkenius, A.; Warrant, E.J.
Title Scotopic colour vision in nocturnal hawkmoths Type Journal Article
Year 2002 Publication Nature Abbreviated Journal Nature
Volume 419 Issue 6910 Pages 922-925
Keywords Animals; Behavior, Animal; Color; Color Perception/*physiology; Conditioning (Psychology)/physiology; Cues; *Darkness; Discrimination Learning/physiology; Humans; Light; Lighting; Moths/*physiology; Photic Stimulation; Photoreceptor Cells, Invertebrate/physiology; Reward; Sensitivity and Specificity; Ultraviolet Rays
Abstract Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.
Address Department of Cell and Organism Biology, Vision Group, Lund University, Helgonavagen 3, S-22362 Lund, Sweden. almut.kelber@zool.lu.se
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:12410310 Approved no
Call Number LoNNe @ kagoburian @ Serial 606
Permanent link to this record
 

 
Author Pendoley, K.; Kamrowski, R.
Title Influence of horizon elevation on the sea-finding behaviour of hatchling flatback turtles exposed to artificial light glow Type Journal Article
Year 2015 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 529 Issue Pages 279-288
Keywords Animals; Hatchling orientation; Artificial lighting; Horizon elevation; Marine turtle; Conservation management; Elevation; Industry; Coastal development; Sea turtle; Sea turtle conservation
Abstract Marine turtles are threatened globally by increasing coastal development. In particular, increased artificial lighting at the nesting beach has the potential to disrupt turtle breeding success. Few published data exist regarding the behaviour of the flatback turtle Natator depressus, a species endemic to Australia, in response to artificial light. Given the ongoing industrialisation of the Australian coastline, this study is a timely investigation into the orientation of flatback hatchlings exposed to light glow produced by lighting typically used in industrial settings. We recorded the orientation of hatchlings at the nesting beach on Barrow Island, Western Australia, exposed to 3 types of standard lighting — high-pressure sodium vapour (HPS), metal halide (MH), and fluorescent white (FW)—at 3 different intensities. The light array was positioned either behind a high dune (producing a high, dark silhouette; 16° elevation), or in a low creek bed (producing a low silhouette and bright horizon; 2° elevation). At medium and high light intensities of all 3 light types, hatchlings were significantly less ocean-oriented when exposed to light at 2° elevation compared to 16° elevation. This difference remained with glow from low-intensity MH light; however, there was no significant difference in orientation of hatchlings exposed to low- intensity HPS and FW light glow at either elevation. Our study emphasises the importance of horizon elevation cues in hatchling sea-finding. Since all species of marine turtles show similar sea-finding behaviour, our results have important implications for management of lighting adjacent to turtle nesting beaches in Australia and elsewhere, as coastal development continues.
Address Pendoley Environmental Pty Ltd, 12A Pitt Way, Booragoon, Western Australia 6154, Australia; ruth.kamrowski@penv.com.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1189
Permanent link to this record
 

 
Author Assum, T.; Bjørnskau, T.; Fosser, S.; Sagberg, F.
Title Risk compensation--the case of road lighting Type Journal Article
Year 1999 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 31 Issue 5 Pages 545-553
Keywords Lighting
Abstract The hypothesis of this article is that drivers will not adjust their behavior, i.e. drivers are not expected to increase their speed, reduce their concentration or travel more when road lighting is installed. The hypothesis was based on previous research showing that road lighting reduces road accidents and that average driving speeds do not increase when road lighting is installed. Our results show that drivers do compensate for road lighting in terms of increased speed and reduced concentration. Consequently, the hypothesis is rejected. This means that road lighting could have a somewhat larger accident-reducing effect, if compensation could be avoided. The fact that previous research has found no change in average speed when road lighting is introduced, seems to be explained by increased driving speeds by some drivers being counterbalanced by a larger proportion of more slowly driving groups of drivers (elderly people and women), i.e. different subgroups of road users compensate in different ways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 625
Permanent link to this record
 

 
Author Bisketzis, N.; Polymeropoulos, G.; Topalis, F. V.
Title A Mesopic Vision Approach for a Better Design of Road Lighting. Type Journal Article
Year 2004 Publication WSEAS Transactions on Circuits and Systems Abbreviated Journal
Volume 3 Issue 5 Pages 1380–1385
Keywords Lighting
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 626
Permanent link to this record