|   | 
Details
   web
Records
Author Czeisler, C.A.
Title Perspective: casting light on sleep deficiency Type Journal Article
Year 2013 Publication Nature Abbreviated Journal Nature
Volume 497 Issue 7450 Pages S13
Keywords Human Health; Circadian Rhythm/physiology/radiation effects; Electricity/adverse effects; Humans; Jet Lag Syndrome/etiology/physiopathology/therapy; Lighting/*adverse effects; Melatonin/metabolism/secretion; Phototherapy; Sleep Deprivation/epidemiology/*etiology/*physiopathology/therapy; Suprachiasmatic Nucleus/physiology/radiation effects
Abstract
Address Division of Sleep Medicine, Harvard Medical School, and Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, in Boston, Massachusetts, USA. charles_czeisler@hms.harvard.edu
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23698501 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 499
Permanent link to this record
 

 
Author Kantermann, T.
Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 16 Pages R689-90
Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight
Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.
Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23968925 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 501
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D.
Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 16 Pages 1554-1558
Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm
Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.
Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23910656; PMCID:PMC4020279 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 505
Permanent link to this record
 

 
Author Stevens, R.G.
Title Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Type Journal Article
Year 2009 Publication International Journal of Epidemiology Abbreviated Journal Int J Epidemiol
Volume 38 Issue 4 Pages 963-970
Keywords Human Health; Animals; Blindness/complications/epidemiology; Breast Neoplasms/epidemiology/*etiology/metabolism; Chronobiology Disorders/*complications/epidemiology/metabolism; Circadian Rhythm/physiology; Disease Models, Animal; Female; Humans; Light Signal Transduction/physiology; Lighting/adverse effects; Melatonin/biosynthesis; Sleep/physiology; Time Factors; *Work Schedule Tolerance
Abstract BACKGROUND: Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. METHODS: The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. RESULTS: Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. CONCLUSION: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Address Department of Community Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-5771 ISBN Medium
Area Expedition Conference
Notes PMID:19380369; PMCID:PMC2734067 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 527
Permanent link to this record
 

 
Author Bellia, L.; Seraceni, M.
Title A proposal for a simplified model to evaluate the circadian effects of light sources Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 5 Pages 493-505
Keywords Lighting
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 571
Permanent link to this record