|   | 
Details
   web
Records
Author Price, L.L.A.; Lyachev, A.; Khazova, M.
Title Optical performance characterization of light-logging actigraphy dosimeters Type Journal Article
Year 2017 Publication Journal of the Optical Society of America. A, Optics, Image Science, and Vision Abbreviated Journal J Opt Soc Am A Opt Image Sci Vis
Volume 34 Issue (down) 4 Pages 545-557
Keywords Human Health, Lighting
Abstract There are several wearable products specially developed or marketed for studying sleep, circadian rhythms, and light levels. However, new recommendations relating to human physiological responses to light have changed what measurements researchers may demand. The performances of 11 light-logging dosimeters from eight manufacturers were compared. The directional and spectral sensitivities, linearity, dynamic range, and resolution were tested for seven models, and compared along with other published data. The sample mainly comprised light-logging actigraphy dosimeters wearable as badges, in accordance with measurement protocols for larger-scale field studies. A proposed standard for optical performance assessments is set out.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1084-7529 ISBN Medium
Area Expedition Conference
Notes PMID:28375324 Approved no
Call Number SU @ spitschan @ Serial 1649
Permanent link to this record
 

 
Author Ngarambe, Jack; Kim, Gon
Title Sustainable Lighting Policies: The Contribution of Advertisement and Decorative Lighting to Local Light Pollution in Seoul, South Korea Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal Sustainability
Volume 10 Issue (down) 4 Pages 1007
Keywords Lighting; Regulation
Abstract We carried out field measurements to determine the contribution of advertisement and decorative lighting to local light pollution in Seoul. We used the lighting limits set by the “Light Pollution Prevention Act”, which regulates light pollution, as measuring criteria. Our results show that both advertisement and decorative lighting are significant contributors to local light pollution in Seoul. Thirty percent of advertisement lighting measured in our study areas exceeded the legal limits. Moreover, we found that certain types of advertisement lighting are more likely to cause light pollution than the others. In addition, 73% of the decorative lighting found in our sample areas exceeded the legal limits. Based on our findings, we suggest that local light pollution policies establish a curfew time when all advertisement and decorative lighting must be completely turned off. Such an approach is essential in reducing lighting levels in outdoor environments. Furthermore, it lessens the burden on law enforcement personnel, who otherwise must ensure that advertisement and decorative lighting levels are kept within the legal limits. In light of the ongoing debate over the role of lighting in public well-being and the sustainability of cities, the present study provides a discussion on the status and management policy of light pollution caused by advertisement and decorative lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1829
Permanent link to this record
 

 
Author Gago-Calderón, A.; Hermoso-Orzáez, M.; De Andres-Diaz, J.; Redrado-Salvatierra, G.
Title Evaluation of Uniformity and Glare Improvement with Low Energy Efficiency Losses in Street Lighting LED Luminaires Using Laser-Sintered Polyamide-Based Diffuse Covers Type Journal Article
Year 2018 Publication Energies Abbreviated Journal Energies
Volume 11 Issue (down) 4 Pages 816
Keywords Lighting
Abstract Energy saving in street lighting is garnering more interest and has become a priority in municipal management. Therefore, LED luminaires are gradually becoming prevalent in our cities. Beyond their energy/economic saving potential, quality in public lighting installations concerns aspects such as uniformity and glare which must be maintained if not improved in any installation renewal project using this technology. The high light intensity generated in a discrete point in LED packages and its directional nature result in significant deficiencies in these last two parameters. To soften these effects, translucent covers are being used as one of the most common solutions with the drawback of significant light intensity losses. The objective of this paper is to evaluate the behavior of LED luminaire’s polyamide-based optical covers manufactured with a laser-sintered process. These are designed to improve glare and uniformity output, to minimize light output reductions, and to be industrially manufactured with no increment of cost for their lighting equipment compared to conventional transparent polycarbonate solutions. A laboratory and field lighting test study has been applied to different covers with the same LED lamp and luminaire to compare the performance of three different solutions built with different polymeric materials and with different light transmission surface textures. The photometric results have been observed and discussed to demonstrate the ability to significantly improve the lighting performance of LED luminaires—illuminance and uniformity levels and discomfort and disability glare indexes— using an improved optic cover.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1844
Permanent link to this record
 

 
Author Souman, J.L.; Borra, T.; de Goijer, I.; Schlangen, L.J.M.; Vlaskamp, B.N.S.; Lucassen, M.P.
Title Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature Type Journal Article
Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 33 Issue (down) 4 Pages 420-431
Keywords Human Health; Lighting
Abstract Studies with monochromatic light stimuli have shown that the action spectrum for melatonin suppression exhibits its highest sensitivity at short wavelengths, around 460 to 480 nm. Other studies have demonstrated that filtering out the short wavelengths from white light reduces melatonin suppression. However, this filtering of short wavelengths was generally confounded with reduced light intensity and/or changes in color temperature. Moreover, it changed the appearance from white light to yellow/orange, rendering it unusable for many practical applications. Here, we show that selectively tuning a polychromatic white light spectrum, compensating for the reduction in spectral power between 450 and 500 nm by enhancing power at even shorter wavelengths, can produce greatly different effects on melatonin production, without changes in illuminance or color temperature. On different evenings, 15 participants were exposed to 3 h of white light with either low or high power between 450 and 500 nm, and the effects on salivary melatonin levels and alertness were compared with those during a dim light baseline. Exposure to the spectrum with low power between 450 and 500 nm, but high power at even shorter wavelengths, did not suppress melatonin compared with dim light, despite a large difference in illuminance (175 vs. <5 lux). In contrast, exposure to the spectrum with high power between 450 and 500 nm (also 175 lux) resulted in almost 50% melatonin suppression. For alertness, no significant differences between the 3 conditions were observed. These results open up new opportunities for lighting applications that allow for the use of electrical lighting without disturbance of melatonin production.
Address Philips Lighting Research, Department Lighting Applications, Eindhoven, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:29984614 Approved no
Call Number GFZ @ kyba @ Serial 1985
Permanent link to this record
 

 
Author Sullivan, J.M.; Flannagan, M.J.
Title The role of ambient light level in fatal crashes: inferences from daylight saving time transitions Type Journal Article
Year 2002 Publication Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 34 Issue (down) 4 Pages 487-498
Keywords Public Safety; Lighting
Abstract The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2126
Permanent link to this record