|   | 
Details
   web
Records
Author Schroer, S.; Hölker, F.
Title Impact of Lighting on Flora and Fauna Type Book Chapter
Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal
Volume Issue (up) Pages 1-33
Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review
Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-00295-8 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1470
Permanent link to this record
 

 
Author Gutierrez-Escolar, A.; Castillo-Martinez, A.; Gomez-Pulido, J.; Gutierrez-Martinez, J.-M.; González-Seco, E.; Stapic, Z.
Title A review of energy efficiency label of street lighting systems Type Journal Article
Year 2016 Publication Energy Efficiency Abbreviated Journal Energy Efficiency
Volume Issue (up) Pages 1-18
Keywords Energy; Energy Efficiency Index; Total Luminous Flux; Energy Efficiency Label; Electronic Ballast; Energy Performance Indicator; Lighting Project; Energy Efficiency Class; Energy Efficiency Level; Road Lighting; Active PowerLighting System; Wind Turbine; Current Energy Efficiency; Luminous Efficacy; Electricity Consumption; Kiviat diagram; Lamp; Light pollution; Pie chart; Dimming luminous flux; review
Abstract There are very few countries that have provisions addressing the energy efficiency of the whole street lighting system, such as Spain or the Netherlands. Nevertheless, there is not an agreement about how energy efficiency must be assessed. The Spanish Government contemplates it in the Royal Decree 1890/2008 with the goal of improving energy savings and efficiency. However, this has not obtained the expected results. Nowadays, energy efficiency of this kind of systems is assessed using a label. In the case of Spain, this label only assesses one magnitude. The contributions of this paper are two evaluation systems (kiviat diagram and pie chart) which assess five magnitudes: lamps, energy efficiency index, light pollution, renewable energy contribution, and harness of the luminous flux using dimming. After that, a survey was done to study several subjects: (1) if citizens are aware about the efficiency of street lighting systems, (2) whether the sample of colors used in the label is adequate, and (3) if our proposed systems could replace the current evaluation system. Finally, the paper finishes with the conclusions of the survey.
Address Department of Computer Sciences, Polytechnic School, University of Alcala, Road Madrid-Barcelona, Km 33.6, Alcala de Henares, 28871, Spain
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1570-6478 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1471
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F.
Title Light Pollution Reduction Type Book Chapter
Year 2014 Publication Handbook of Advanced Lighting Technology Abbreviated Journal
Volume Issue (up) Pages
Keywords ligting technology; awareness; skyglow, lighting design
Abstract Artificial light at night is an irreplaceable technology for our society and its activities at nighttime. But this indispensable tool has detrimental side effects, which have only come to light in the past 10–20 years. This chapter reviews ways to implement technology in order to lower the impact of artificial light at night on nature and humans. Further, it provides guidelines for environmental protection and scientific approaches to reduce the increase in light pollution and discusses the urgent need for further research. Measures to prevent obtrusive light and unintentional trespass into homes and natural habitats are

mostly simple solutions like shielding luminaires and predominantly require awareness. Shades are another effective tool to reduce trespass from interior lights. Especially in greenhouses, the use of shades significantly reduces the contribution to skyglow. Artificial light should be switched off whenever it is not needed. Smart, flexible lighting systems can help to use artificial light with precision. The choice of the appropriate illumination has to be balanced by the needs for optimal visibility, human well-being, environmental conservation and protection of the night sky. For visibility, conditions comparable to bright moonlit nights (0.3 lx) are sufficient. Low-level streetlights that produce only 1–3 lx at the surface meet the requirement of facial cognition. Although this light level might be too low for road safety, a consideration of maximum illumination levels in street lighting is recommended. The spectral power distribution of illuminants can impact several environmental parameters. For example, illuminants emitting short wavelengths can sup- press melatonin in higher vertebrates (including humans), are attracting many insect species, and contribute in skyglow above average. Recent findings in different measures for energy efficiency of illuminants at scotopic or mesopic vision conditions compared to photopic conditions indicate that the assessment of lighting products needs fundamental revision. Further research is crucially needed to create refuges for light-sensitive species at night, to measure the impact of artificial light on nature, and also to monitor the improvements of light pollution-reducing measures. Decrees in various regions have helped to lower the impact of artificial light at night significantly. Measures to reduce the impact of artificial light at night need to be carefully balanced with the surrounding environment. Thoughtful guidelines are crucial to reducing the rapid increase in sky brightness worldwide. These guidelines need to be made accessible for decision makers especially in areas which require new light installations.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor Karlicek, Robert Sun, Ching-Chern Zissis, Georgis Ma, Ruiqing
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1569
Permanent link to this record
 

 
Author Hölker, Andreas; Doulos, Lambros; Schroer, Sibylle; Topalis, Frangiskos
Title Sustainable outdoor lighting for reducing energy and light waste Type Conference Article
Year 2016 Publication 9th International Conference Improving Energy Efficiency in Commercial Buildings and Smart Communities Abbreviated Journal
Volume Issue (up) Pages 202-213
Keywords lighting design; lighting technology; light pollution
Abstract The lack of lighting planning for internal and external illumination of buildings contributes to wasting energy and to the issue of light pollution. This will be demonstrated with research from the ground and by analysis of images, taken with detectors on satellites, the International Space Station or planes. Besides large area floodlighting from airports or sports facilities, facade illumination is the most important contributor. The effects of malpractice versus sustainable lighting planning solutions will be demonstrated with some examples in cities like Bonn, Strasbourg, Athens and Thessaloniki. Further examples in the countryside will demonstrate lighting practice in the German star park Biosphere Reserve Rhön. Facade lighting planning, considering optimal alignment, the intensity and the colour quality of the illumination, will contribute to reducing light pollution and thus waste of energy and will increase human comfort at the same time.

Experience shows that unilateral promoting energy efficiency will finally result in more extended use of energy, which is known as rebound effect. In addition the small size and long lifetime of the modern solid state lighting will result in an increased use even in remote places thereby emitting more artificial light into the natural night. This does not only affect the energy use, but also the biological rhythms of animals and human beings.

More interdisciplinary criteria for a sustainable lighting with reduced light pollution will be discussed based on the observations including data provided by the EU-network “Loss of the Night”-Network (EU-COST Action ES1204 LoNNe).
Address
Corporate Author Thesis
Publisher JRC Confernce and workshop reports Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1573
Permanent link to this record
 

 
Author Bullough, J.D.; Skinner, N.P.; Plummer, T.T.
Title Assessment of an Adaptive Driving Beam Headlighting System: Visibility and Glare Type Journal Article
Year 2016 Publication Transportation Research Record: Journal of the Transportation Research Board Abbreviated Journal Transportation Research Record: Journal of the Transportation Research Board
Volume 2555 Issue (up) Pages 81-85
Keywords Lighting
Abstract Recent developments in solid-state lighting, sensor, and control technologies make new configurations for vehicle forward lighting feasible. Adaptive driving beam (ADB) systems build on systems that automatically switch from high- to low-beam headlights in the presence of oncoming vehicles. ADB systems can detect oncoming headlights and preceding taillights and reduce their intensity only in the direction of the other lights, while they maintain higher levels of illumination throughout the remainder of the field of view. The nominal benefit of ADB systems is the provision of high-beam levels of illumination in the forward scene, while glare is reduced to oncoming and preceding drivers, who perceive low-beam illumination levels. In this study, two dynamic field experiments were conducted: one experiment measured the ability of observers to identify the walking direction of roadside pedestrian targets with and without the use of the ADB system; the other experiment evaluated the discomfort glare elicited by the ADB system compared with the glare from conventional low- and high-beam headlights. The findings from both experiments were consistent with previous analytical and static field tests and suggested that ADB systems can offer safety benefits beyond those offered by conventional headlight systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-1981 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1618
Permanent link to this record