|   | 
Details
   web
Records
Author Cao, D.; Barrionuevo, P.A.
Title The importance of intrinsically photosensitive retinal ganglion cells and implications for lighting design Type Journal Article
Year 2015 Publication Journal of Solid State Lighting Abbreviated Journal J Sol State Light
Volume 2 Issue 1 Pages 10
Keywords (up) Human Health; lighting; Melanopsin; ipRGC; Photoreceptors; Circadian; Visual perception; Color Contrast; Sensitivity; LED; Lighting Design
Abstract We reviewed the role of melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) in light-dependent functions, including circadian rhythm that is important for health and visual perception. We then discussed the implications for lighting design.
Address Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago; dcao98(at)uic.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1325
Permanent link to this record
 

 
Author Kyba, C.C.M.; Kantermann, T.
Title Does ambient light at night reduce total melatonin production? Type Journal Article
Year 2015 Publication Hormones Abbreviated Journal Hormones
Volume Issue Pages
Keywords (up) Human Health; melatonin; ambient lighting; indoor light; sleep; *Circadian Rhythm; chronotype
Abstract It was with great interest that we read the recent study by Hersh et al on the effects of sleep and light at night on melatonin in adolescents. Of particular interest was their focus on electronic use after “lights out”. The authors highlight the importance of understanding what effects this may have on sleep, citing a survey that showed that 72% of American 13-18 year olds regularly use a cellphone or computer before trying to go to sleep. In their study, Hersh et al1 did not observe a significant suppression in urinary morning melatonin (aMT6s) levels with respect to the use of electronic devices between lights off and sleep onset. Therefore, the authors conclude that “nighttime behaviors of adolescents by and large do not impact urinary melatonin levels”. Absence of evidence, however, is not the same as evidence of absence, and we believe that the authors’ conclusion is premature.
Address Deutsches GeoForschungsZentrum GFZ, Telegraphenberg, 14473 Potsdam, Germany; kyba(at)gfz-potsdam.de
Corporate Author Thesis
Publisher Hellenic Endocrine Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1236
Permanent link to this record
 

 
Author Garcia-Saenz, A.; Sanchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragones, N.; Llorca, J.; Amiano, P.; Martin Sanchez, V.; Guevara, M.; Capelo, R.; Tardon, A.; Peiro-Perez, R.; Jimenez-Moleon, J.J.; Roca-Barcelo, A.; Perez-Gomez, B.; Dierssen-Sotos, T.; Fernandez-Villa, T.; Moreno-Iribas, C.; Moreno, V.; Garcia-Perez, J.; Castano-Vinyals, G.; Pollan, M.; Aube, M.; Kogevinas, M.
Title Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) Type Journal Article
Year 2018 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 126 Issue 4 Pages 047011
Keywords (up) Human Health; Remote Sensing; Adult; Aged; Aged, 80 and over; Breast Neoplasms/*epidemiology/etiology; Case-Control Studies; Circadian Rhythm; Female; Humans; Incidence; Light/*adverse effects; Lighting/*adverse effects; Male; Middle Aged; Prostatic Neoplasms/*epidemiology/etiology; Risk Factors; Spain/epidemiology; Young Adult
Abstract BACKGROUND: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers. OBJECTIVES: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase-control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night. METHODS: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008-2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012-2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject. RESULTS: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51). CONCLUSION: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum. https://doi.org/10.1289/EHP1837.
Address IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes PMID:29687979; PMCID:PMC6071739 Approved no
Call Number GFZ @ kyba @ Serial 3044
Permanent link to this record
 

 
Author Takemura, Y.; Ito, M.; Shimizu, Y.; Okano, K.; Okano, T.
Title Adaptive light: a lighting control method aligned with dark adaptation of human vision Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 11204
Keywords (up) Human Health; Vision; Lighting
Abstract Light exposure before sleep causes a reduction in the quality and duration of sleep. In order to reduce these detrimental effects of light exposure, it is important to dim the light. However, dimming the light often causes inconvenience and can lower the quality of life (QOL). We therefore aimed to develop a lighting control method for use before going to bed, in which the illuminance of lights can be ramped down with less of a subjective feeling of changes in illuminance. We performed seven experiments in a double-blind, randomized crossover design. In each experiment, we compared two lighting conditions. We examined constant illuminance, linear dimming, and three monophasic and three biphasic exponential dimming, to explore the fast and slow increases in visibility that reflect the dark adaptation of cone and rod photoreceptors in the retina, respectively. Finally, we developed a biphasic exponential dimming method termed Adaptive Light 1.0. Adaptive Light 1.0 significantly prevented the misidentification seen in constant light and effectively suppressed perceptions of the illuminance change. This novel lighting method will help to develop new intelligent lighting instruments that reduce the negative effect of light on sleep and also lower energy consumption.
Address The Smart Life Science Institute, ACROSS, Waseda University, Tokyo, Japan. okano@waseda.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32641723; PMCID:PMC7343865 Approved no
Call Number GFZ @ kyba @ Serial 3050
Permanent link to this record
 

 
Author Aubé, M.; Roby, J.; Kocifaj, M.
Title Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 7 Pages e67798
Keywords (up) Humans; *Light; Lighting/methods; Melatonin/*metabolism; Photosynthesis/*radiation effects; Plant Development/radiation effects; blue light; circadian disruption
Abstract Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.
Address Departement de physique, Cegep de Sherbrooke, Sherbrooke, Quebec, Canada. martin.aube@cegepsherbrooke.qc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23861808; PMCID:PMC3702543 Approved no
Call Number IDA @ john @ Serial 282
Permanent link to this record