|   | 
Details
   web
Records
Author Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue 1 Pages 123-128
Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes (down) PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record
 

 
Author Smith, M.R.; Revell, V.L.; Eastman, C.I.
Title Phase advancing the human circadian clock with blue-enriched polychromatic light Type Journal Article
Year 2009 Publication Sleep Medicine Abbreviated Journal Sleep Med
Volume 10 Issue 3 Pages 287-294
Keywords Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Lighting/*methods; Male; Melatonin/metabolism; Phototherapy/*methods; Sleep; Wakefulness; Young Adult; blue light; sleep
Abstract BACKGROUND: Previous studies have shown that the human circadian system is maximally sensitive to short-wavelength (blue) light. Whether this sensitivity can be utilized to increase the size of phase shifts using light boxes and protocols designed for practical settings is not known. We assessed whether bright polychromatic lamps enriched in the short-wavelength portion of the visible light spectrum could produce larger phase advances than standard bright white lamps. METHODS: Twenty-two healthy young adults received either a bright white or bright blue-enriched 2-h phase advancing light pulse upon awakening on each of four treatment days. On the first treatment day the light pulse began 8h after the dim light melatonin onset (DLMO), on average about 2h before baseline wake time. On each subsequent day, light treatment began 1h earlier than the previous day, and the sleep schedule was also advanced. RESULTS: Phase advances of the DLMO for the blue-enriched (92+/-78 min, n=12) and white groups (76+/-45 min, n=10) were not significantly different. CONCLUSION: Bright blue-enriched polychromatic light is no more effective than standard bright light therapy for phase advancing circadian rhythms at commonly used therapeutic light levels.
Address Biological Rhythms Research Laboratory, Rush University Medical Center, Suite 425, 1645 W. Jackson Boulevard, Chicago, IL 60612, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes (down) PMID:18805055; PMCID:PMC2723863 Approved no
Call Number IDA @ john @ Serial 289
Permanent link to this record
 

 
Author Monsere, C.M.; Fischer, E.L.
Title Safety effects of reducing freeway illumination for energy conservation Type Journal Article
Year 2008 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 40 Issue 5 Pages 1773-1780
Keywords Lighting; Accidents, Traffic/*statistics & numerical data; *Automobile Driving; *Conservation of Energy Resources; Environment Design; Humans; *Lighting; Models, Statistical; Oregon; Safety; Wounds and Injuries/epidemiology
Abstract The addition of illumination where none was present is generally believed to have a positive effect on motor vehicle safety; reducing the frequency, as well as the severity of crashes. The operational cost of illumination, however, can make it a candidate for conservation during periods of high energy costs. In response to a forecasted energy shortage, the Oregon Department of Transportation selectively reduced illumination on interstate highways as part of an energy-saving effort. The reductions occurred at 44 interchanges and along 5.5 miles of interstate highway. This paper presents the results of a crash-based analysis of the changes in safety performance using an empirical-Bayes observational methodology. The study found an increase in reported crashes where the lineal lighting was reduced both in total crashes (28.95%, P=0.05) and injury night crashes (39.21%, P=0.07). Where full interchange lighting was reduced to partial lighting, a 2.46% increase (P=0.007) in total night crashes was observed. Injury night crashes, however, decreased by 12.16% (P<0.001) though day injury crashes also decreased at these locations. Unexpectedly, for interchanges where illumination was reduced from partial plus to partial, a 35.24% decrease (P<0.001) in total crashes and 39.98 (P<0.001) decrease in injury night crashes was found, though again, day crashes also decreased.
Address Department of Civil & Environmental Engineering, Portland State University, P.O. Box 751, Portland, OR 97207-0751, USA. monsere@pdx.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes (down) PMID:18760107 Approved no
Call Number LoNNe @ kagoburian @ Serial 643
Permanent link to this record
 

 
Author Stevens, R.G.; Blask, D.E.; Brainard, G.C.; Hansen, J.; Lockley, S.W.; Provencio, I.; Rea, M.S.; Reinlib, L.
Title Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases Type Journal Article
Year 2007 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 115 Issue 9 Pages 1357-1362
Keywords Human Health; Animals; *Circadian Rhythm; Environmental Exposure; Humans; *Lighting/adverse effects; *Neoplasms/etiology; Research; breast cancer; circadian rhythms; clock genes; lighting; melatonin; phototransduction; pineal gland
Abstract Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light-dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge.
Address Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes (down) PMID:17805428; PMCID:PMC1964886 Approved no
Call Number LoNNe @ kagoburian @ Serial 821
Permanent link to this record
 

 
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R.
Title Circadian effects of light no brighter than moonlight Type Journal Article
Year 2007 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 22 Issue 4 Pages 356-367
Keywords Animals; Biological Clocks/physiology/*radiation effects; *Circadian Rhythm; Cricetinae; Dose-Response Relationship, Radiation; Lighting/*methods; Male; Mesocricetus; Motor Activity; Oscillometry; Photic Stimulation/methods; *Photoperiod; Physical Conditioning, Animal; Time Factors
Abstract In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.
Address Department of Psychology, University of California, San Diego, La Jolla, CA 92093, usa. jaevans@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes (down) PMID:17660452 Approved no
Call Number IDA @ john @ Serial 31
Permanent link to this record