toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, X.; Duarte, F.; Ratti, C. url  doi
openurl 
  Title Analyzing the obstruction effects of obstacles on light pollution caused by street lighting system in Cambridge, Massachusetts Type Journal Article
  Year 2019 Publication (up) Environment and Planning B: Urban Analytics and City Science Abbreviated Journal Environment and Planning B: Urban Analytics and City Science  
  Volume in press Issue Pages 2399808319861645  
  Keywords Skyglow; Lighting; upward light  
  Abstract Artificial light has transformed urban life, enhancing visibility, aesthetics, and increasing safety in public areas. However, too much unwanted artificial light leads to light pollution, which has a negative effect on public health and urban ecosystems, as well as on the aesthetic and cultural meanings of the night sky. Some of the factors interfering with the estimation of light pollution in cities are urban features, such as the presence of trees, road dimensions, and the physical characteristics of buildings. In this study, we proposed a simplified model for unwanted upward light coming from street luminaires based on a building height model and the publicly accessible Google Street View images. We simulated and analyzed the obstruction effects of different street features on the light pollution caused by the street lighting system in Cambridge, Massachusetts. By providing quantitative information about the connections between the streetscape features and the amount of unwanted upward artificial light, this study provides reference values to inform policies aimed at curbing light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-8083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2587  
Permanent link to this record
 

 
Author Leccese, F.; Leonowicz, Z. url  openurl
  Title Intelligent wireless street lighting system. Type Journal Article
  Year 2012 Publication (up) Environmental and Electrical Engineering, 11th International Conference Abbreviated Journal  
  Volume Issue Pages 958–961  
  Keywords Lighting  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 642  
Permanent link to this record
 

 
Author Shang, Y.-M.; Wang, G.-S.; Sliney, D.; Yang, C.-H.; Lee, L.-L. url  doi
openurl 
  Title White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model Type Journal Article
  Year 2014 Publication (up) Environmental Health Perspectives Abbreviated Journal Environ Health Perspect  
  Volume 122 Issue 3 Pages 269-276  
  Keywords LED; light emitting diode; lighting; retina; Eye Diseases; blue light; Blue-rich light sources  
  Abstract BACKGROUND: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000-10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. OBJECTIVE: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. METHODS: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. RESULTS: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. CONCLUSION: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. CITATION: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269-276; http://dx.doi.org/10.1289/ehp.1307294.  
  Address Institute of Environmental Health, National Taiwan University, Taipei, Taiwan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24362357; PMCID:PMC3948037 Approved no  
  Call Number IDA @ john @ Serial 324  
Permanent link to this record
 

 
Author Spivey, A. url  doi
openurl 
  Title Light at night and breast cancer risk worldwide Type
  Year 2010 Publication (up) Environmental Health Perspectives Abbreviated Journal Environ Health Perspect  
  Volume 118 Issue 12 Pages a525  
  Keywords Human Health; Breast Neoplasms/epidemiology/*etiology/prevention & control; Female; Humans; Lighting/*adverse effects; Male; Prostatic Neoplasms/epidemiology/*etiology/prevention & control; Risk Factors  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21123149; PMCID:PMC3002207 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 813  
Permanent link to this record
 

 
Author Stevens, R.G.; Blask, D.E.; Brainard, G.C.; Hansen, J.; Lockley, S.W.; Provencio, I.; Rea, M.S.; Reinlib, L. url  doi
openurl 
  Title Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases Type Journal Article
  Year 2007 Publication (up) Environmental Health Perspectives Abbreviated Journal Environ Health Perspect  
  Volume 115 Issue 9 Pages 1357-1362  
  Keywords Human Health; Animals; *Circadian Rhythm; Environmental Exposure; Humans; *Lighting/adverse effects; *Neoplasms/etiology; Research; breast cancer; circadian rhythms; clock genes; lighting; melatonin; phototransduction; pineal gland  
  Abstract Light, including artificial light, has a range of effects on human physiology and behavior and can therefore alter human physiology when inappropriately timed. One example of potential light-induced disruption is the effect of light on circadian organization, including the production of several hormone rhythms. Changes in light-dark exposure (e.g., by nonday occupation or transmeridian travel) shift the timing of the circadian system such that internal rhythms can become desynchronized from both the external environment and internally with each other, impairing our ability to sleep and wake at the appropriate times and compromising physiologic and metabolic processes. Light can also have direct acute effects on neuroendocrine systems, for example, in suppressing melatonin synthesis or elevating cortisol production that may have untoward long-term consequences. For these reasons, the National Institute of Environmental Health Sciences convened a workshop of a diverse group of scientists to consider how best to conduct research on possible connections between lighting and health. According to the participants in the workshop, there are three broad areas of research effort that need to be addressed. First are the basic biophysical and molecular genetic mechanisms for phototransduction for circadian, neuroendocrine, and neurobehavioral regulation. Second are the possible physiologic consequences of disrupting these circadian regulatory processes such as on hormone production, particularly melatonin, and normal and neoplastic tissue growth dynamics. Third are effects of light-induced physiologic disruption on disease occurrence and prognosis, and how prevention and treatment could be improved by application of this knowledge.  
  Address Department of Community Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-6765 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17805428; PMCID:PMC1964886 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: